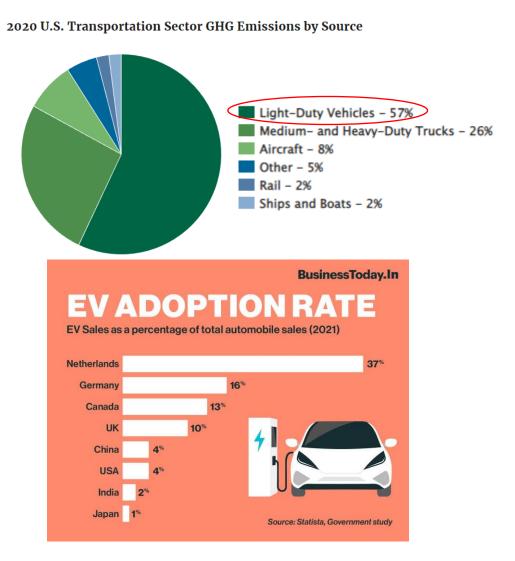
Reliable Energy Consumption Modeling for an Electric Vehicle Fleet

Millend Roy, Akshay Nambi, Anupam Sobti, Tanuja Ganu, Shivkumar Kalyanaraman Shankar Akella, Jaya Subha Devi, S A Sundaresan

Electric Vehicles

- Transport has the highest reliance on fossil fuels of any sector and accounts for 27% of CO2 emissions
- Numerous government incentives and support to accelerate adoption of Electric Vehicles
- But, still there are several concerns:
 - limited driving range per charge,
 - long charging time,
 - battery replacement cost,
 - battery technology,
 - limitations related to infrastructure.



Limited Driving Range

At the end-user Level: (Range Anxiety)

Naïve Solution:

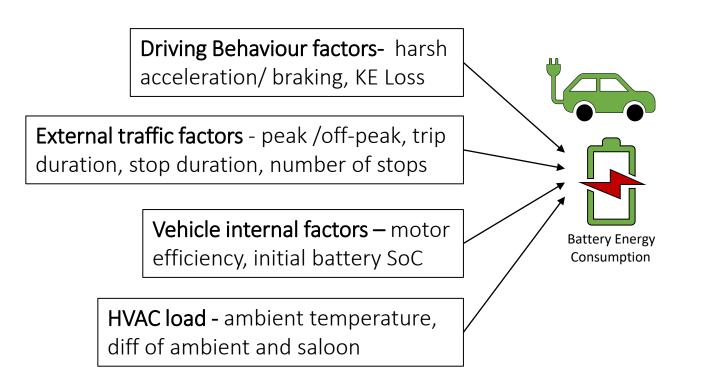
- Increase battery capacity
- Increase no. of charging stations

At the organizational Level: (Planning Dilemmas)

- Route Planning and logistics
- Driver Planning
- Battery Sizing
- Maintenance Planning
- Bidding Prognostics for a particular route segment

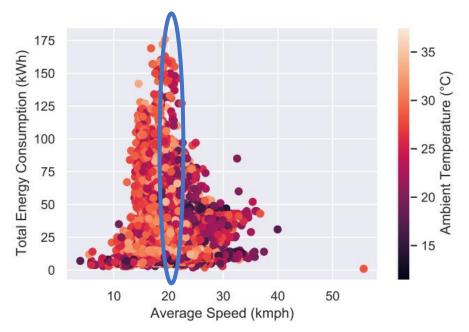
EV's Energy Consumption estimation and modeling is crucial

Energy Consumption Modelling is non-trivial



Challenges:

- 1. Limited parameter observability
- 2. Modeling a subset of features by itself is not a good indicator of energy consumption levels.



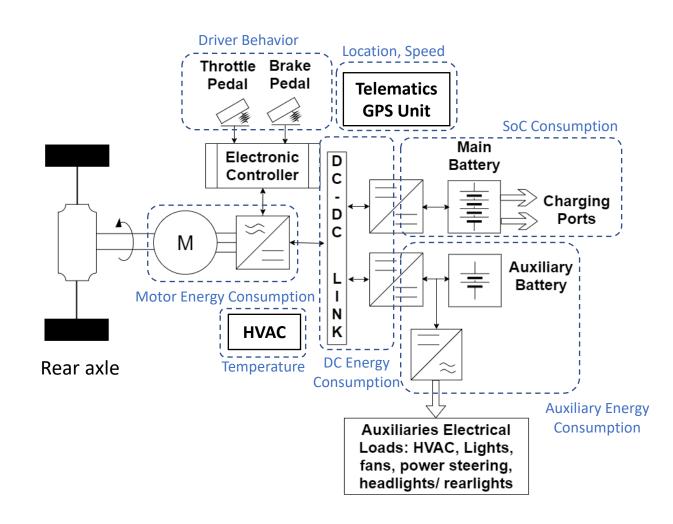
Problem Statement

Accurately predict Total Energy Consumption by using information available only prior to the start of a trip

Our Solution:

- **Data-centric:** Derive all the features that directly or indirectly affects vehicle's energy consumption based on domain knowledge and vehicle telemetry.
- Two-stage:
 - **Stage-1 (pre-trip):** Derive the features which are available prior to a trip. e.g., distance, time, etc.
 - Stage -2 (on-trip): Estimate the features for the trip using historical data. e.g., driving behavior- harsh braking We combine both pre-trip and estimated on-trip features to predict the *"Total Energy Consumption prior to the start of a trip"*.

Electric Vehicle Schematic



Intuitive Features/Labels	Data Logged in Vehicle		
Motor Energy Consumption	Motor input voltageMotor input current		
DC Energy Consumption	 Energy consumed in DC-DC converter and links 		
Auxiliary Energy Consumption	Aux. Batt. Pack VoltageTotal aux. input current		
Driver Behavior	Throttle & Brake pedal positionsPedal Pressure values		
Location/Distance	 Latitude Longitude Vehicle odometer GPS odometer 		
Speed	Tachometer based wheel speedGPS speed		
Temperature from Heating, Ventilation & Air Conditioning	 Ambient Temperature Saloon Temperature		
Battery Energy Consumption	 Battery State of Charge (SoC) Battery Status Battery Pack Voltage Battery Pack Current 		

Feature Selection

Logged features: These available apriori and can be logged during a trip

- **Trip time:** Difference of timestamps at the beginning and end of the trip.
- **Trip distance**: Summation of the Haversine distances between 2 geospatial points of 6s apart recorded as GPS attributes (lat, long) over the whole trip.
- Average speed: Mean wheel-based speed (tachometer) for the vehicle.
- Ambient temperature: Mean ambient temperature for the trip
- Saloon temperature: Mean temperature inside the bus indicating the usage of HVAC system.
- **Consumed state of charge**: Records the charge depletion of the high voltage battery during the trip. Difference of states between starting and end of a trip
- **DC-DC energy consumption**: Total Energy lost in switching activity of the battery voltage to HVDC to run the motor drive.
- Auxiliary energy consumption: Total Energy consumed by the auxiliary devices in the vehicle.
- Motor energy consumption: Total Energy fed as input to the AC motor.

Engineered Features

• Traffic conditions:

Time of Day (TOD), Peak/off-peak Hours, Number of stops, Stop Duration.

• Driver behavior:

Speed categories, regenerative braking energy, kinetic energy loss due to deceleration, kinetic energy gain due to acceleration, harsh acceleration counts, harsh braking counts, over speeding counts.

• Geography :

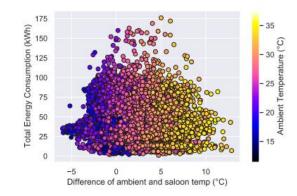
Difference in altitude

• Environmental conditions :

Difference between ambient and saloon temp.

• Travel specifications:

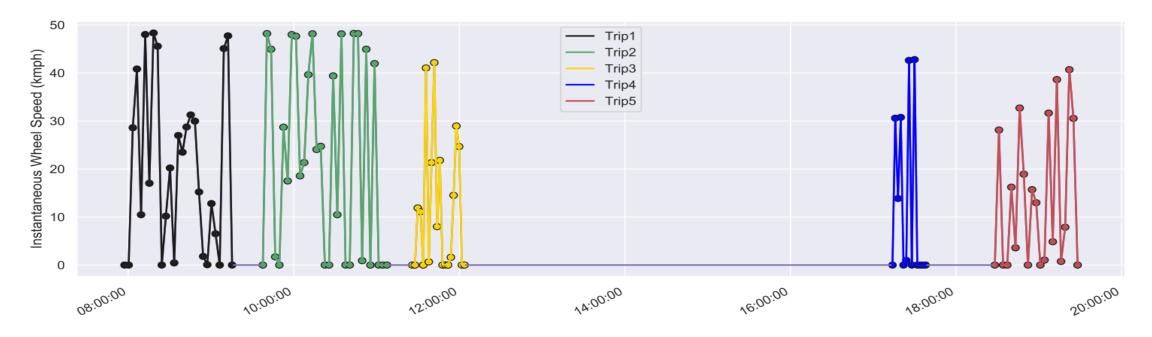
Trip length range, initial state of charge of battery before the start of the trip, efficiency of the motor.



Our Dataset Overview & Trip Definition

- Fleet of **27** electric buses
- Distance Coverage of 460,000 km (having 14413 trips)
- Time series granularity of *6 seconds*.

A "trip" is defined as a period of vehicle data where the ignition is on and it has less than 15 minutes of stops, i.e, we instantiate a new trip if the vehicle stops for more than 15 minutes (continuously) while travelling on a route.



Evaluation Metrics

We model energy consumption prediction as a regression problem

Metrics:

R2 score: Coefficient of determination

$$R^{2} = 1 - \frac{\sum_{i=1}^{m} (y_{i} - \hat{y}_{i})^{2}}{\sum_{i=1}^{m} (y_{i} - \bar{y})^{2}}$$

Mean Absolute Percentage Error (MAPE)

$$MAPE = (\frac{1}{m} \sum_{i=1}^{m} \frac{|y_i - \hat{y}_i|}{y_i}) \times 100$$

• Median Absolute Percentage Error (MedAPE) $MedAPE = median(\frac{|y_i - \hat{y}_i|}{|y_i|}) \times 100$

Training data and ML Models

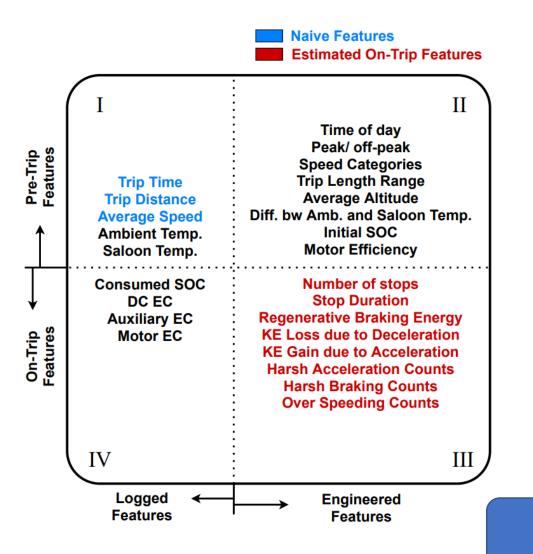
Dataset: A total of 14413 trips from 27 eBuses across a total of 4 months period.

Random Data split of **70/10/20**(%) i.e., 10089, 1441, 2883 trips for training, validation and testing.

Models focused on for the Results:

- Light Gradient Boosting Machine (LightGBM):
 - Fast training, buckets continuous features to discrete bins Histogram based
- Adaptive Boosting (AdaBoost) :
 - Robust to overfitting since parameters not optimized jointly depends on the choice of weak learners, noise in the dataset, dimensionality.

Ablation Study



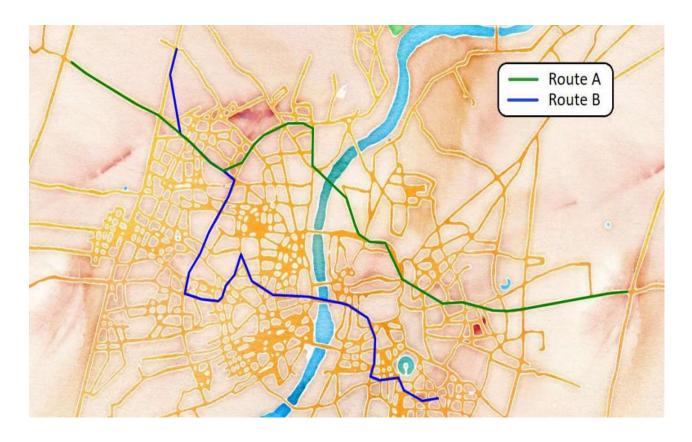
#	Footuro	Model	Evaluation Metric		
#	Feature	woder	R2 score	ΜΑΡΕ	MedAPE
1	ALL	LightGBM AdaBoost	0.994 0.998	3.745 1.516	2.867 1.118
2	NF	LightGBM AdaBoost	0.957 0.955	9.262 9.350	7.473 7.494
3	LF	LightGBM AdaBoost	0.989 0.988	4.369 4.572	3.396 3.584
4	PF(L)	LightGBM AdaBoost	0.965 0.963	8.072 8.154	6.485 6.769
5	PF(LEF)	LightGBM AdaBoost	0.968 0.967	7.623 7.768	6.112 6.227
6	PF(ON)	LightGBM AdaBoost	0.990 0.993	4.294 3.027	3.064 2.213

Results using proposed methodology

Our technique can predict energy consumption with 3-4% MAPE and 0.99 R2 score

Route Generalization

Evaluate the performance of the model trained on Route A and test on Route B



Length of the routes:

- Route A = 22.40km
- Route B = 20.96km

- Train on Route A and test on Route B:
 - Training set = 2047 trips
 - Test set = 595 trips
 - Results: MAPE = 7.3%

Our engineered features can capture diverse characteristics in the data and can be used to generalize across different routes

Applicability to other EV public dataset : Vehicle Energy Dataset

Features of Vehicle Energy Dataset:

- Covers only **3** EVs (passenger car: 2013 Nissan Leaf)
- Battery Capacity of the car 24kWh
- Distance coverage: ~7600 km
- Logging Time granularity : **1** seconds
- Total Trips (294+202+11 = **507 trips**)
- Parameters logged:

Vehicle ID, GPS, Altitude, Vehicle Speed, Yes 600,000 Hybrid, Battery, Fuel Engine Signals, Ambient Temperature, Battery Usage, Auxiliary Power Signals, Battery V-I, Battery SOC Engineer some of the described features

Predict consumed state of charge per trip using our proposed 2-stage model

Models		Evaluation Metric		
		MAE	RMSE	
Ours	LightGBM	1.22	1.79	
	AdaBoost	1.382	1.99	
SOTA	LSTM	1.47	7.78	
	DNN	2.33	9.91	

The proposed approach and feature engineering process can be easily applied to other EV datasets

Other Generalization Studies:

• Training with lesser data

The performance of the 2-stage pipeline with PF(ON) features is tested by reducing the training data from 80% to 50% to 20% and results in similar estimation performance

Longevity Study

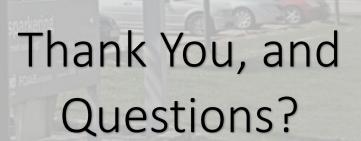
The proposed model when trained on trips from one time period (2 months) and tested on trips from another time period (2 months) results in a MAPE of 6.44% showing the generalization capability over other time periods.

• Vehicle Generalization

We use data from a subset of the vehicles for training and test on the other subset of vehicles (non-overlapping vehicles) resulting in a MAPE of 6.16%.

Conclusion

- Modelling and estimating energy consumption of EVs in real-world is non-trivial
- We modeled the energy consumption for a fleet of buses using features which describe various aspects of a trip including external factors (like weather and traffic conditions), vehicle internal factors, driver behaviour etc.
- Our two-stage prediction approach with some intermediate features predicted using ML models along with directly observed features, can achieve an MAPE of < 5%
- Our models generalize well for a new set of vehicles, routes and time periods
 - The proposed approach also generalizes well to other EV datasets
- With accurate estimation applications such as routing, fleet management, battery sizing, etc., would be able to benefit and make electric vehicle fleets an integral part



EI