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A B S T R A C T   

Augmentation of distributed energy resources (DERs) safely in distribution system termed as hosting capacity 
(HC) is one of the prominent needs to achieve energy sufficiency with minimum emission. However, any 
amendment in HC over premeditated injection sets up challenges in perspective of situational awareness (SA) of 
networks for precise decision-making related to fault prediction and location. In this work, authors propose 
histogram-based gradient boost (HGB) algorithm, an accurate machine learning (ML) technique for fault type 
detection and location. Due to the unique characteristic of noise cancelation, spectral-kurtosis is utilized for 
extraction of features of the faulted transient signals. For improved competence of the process, optimized feature 
importance values are considered. In order to study the efficacy of the proposed method, HC of the network is 
altered, leading to up-gradation of network parameters. These upgraded parameters are used for retraining the 
proposed ML algorithm for desired SA, with perception, comprehension, projection, and accurate decision 
making. The authors also considered other ML techniques to showcase a comparative study with the HGB. The 
entire analysis is tested on reconfigured IEEE-33 bus distribution system developed in Typhoon HIL real-time 
simulator. The proposed methodology is also meticulously compared with existing literature to establish its 
excellence.   

1. Introduction 

The advancement in technology contributed to the sprawl of the 
power system, enriching it towards a smart grid. The power distribution 
system being an integral part, is no exception to this development. With 
the paradigm shift of distribution system from passive to active, power 
flow dynamics changed to a great extent. This has led to incredible de
velopments in the form of integration of intermittent source-based 
distributed generators. However, augmentation of DERs to enhance 
the sustenance of the distribution system termed as HC, without 
violating the network parameters is a key concern [1]. The maximum 
possible HC although is calculated in the planning stage, but exponential 
load growth results in a change of network parameters, i.e., voltage, 
current and THD, leading to alteration of power flow [2]. Simulta
neously, estimation of upcoming renewable integration in the distribu
tion grid is also uncertain, as dependent on the political and legal 
constraints of the concerned region and the economic benefits provided 

by the proposed states. This variable power integration into the distri
bution system may create several issues such as unwanted operation or 
failure in operation of the conventional protection system. This is due to 
the fact that integration of DER changes the line current in the network. 
With such variations in the active distribution system, the traditional 
protection scheme maloperates and may not provide desired SA [3]. In 
this context, the unavoidable dynamics of the distribution system need 
to be seen with utmost care by all the SA-based components of the power 
system, such as perception, comprehension, projection, and decision 
making [4]. Care should be taken with surgical precision for smooth and 
reliable operation of the network. Although various upgradation in 
protection philosophy such as providing additional time step in pro
tection co-ordination, change in current setting and additional equip
ments can be added to counterbalance the degradation in fault detection 
due to addition of DERs, but correct fault detection could not be guar
anteed at all the time [5,6]. 
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1.1. Motivation 

To avoid various detrimental environmental issues and to deal with 
the limited amount of fossil fuel, renewable energy based DERs is one of 
the viable solutions. As the sustained growth is expected in DER inte
gration into grid for upcoming decade, the importance of protection 
system to provide a reliable power is unassailable. With integration of 
DERs the existing protection system is susceptible to maloperation. 
Although various adjustments and inclusion of more devices can be 
made to improve the protection performance but these solutions are not 
sustainable. It may so happen that the integration of DERs can be happen 
abiding the HC of node, but the traditional protection system fails due to 
lack of ability to adopt the change or due to misoperation, which is not 
rare. It is impractical to minutely adjust the protection setting with each 
power injection upgradation of prosumer incase of very precise setting 
margin. Taking all the issues into consideration a sustainable, low-cost 
method which can work with the present as well as future network 
environment is essential. 

1.2. Literature review 

To improve the fault detection capabilities ML based approach seems 
to be a great solution, as depicted in [7–10]. The authors in [7], utilized 
a support vector machine to classifying the detected fault through the 
features extracted from the FFT analysis. High resolution synchrophasor 
data is vital for this proposed method to perform effective fault identi
fication [7]. But, the exact faulted phase detection such as AN, AB, ABN 
etc., which may be crucial for some applications is not presented. In [8] 
the authors used a combination of continuous wavelet transform and 
convolutional neural network to identify the line-to-ground fault in the 
distribution network. However, the insight for measurement of lower 
sampling rates, which may cause difficulty in implementing this strategy 
with low-cost devices is not assessed. To detect and differentiate grid 
fault and anti-islanding in the presence of solar photovoltaic (SPV) in the 
distribution grid authors in [9,10] utilized SVM method, which is also 
effective in the presence of plugin electric vehicle. In [9,10] the author 
demonstrated this technique considering real example of a single grid 
connected SPV system. Although this fault detection technique 
providing promising result for single SPV system to the utility, the 
performance of the system needs to be evaluated in the presence of 

multiple DERs at different locations and with distributed network pa
rameters. Even though ML is applied to enhance the capabilities to 
accurately detect various faults in power system network, effect of HC on 
protection is not discussed in the available literature thoroughly. The 
colossal growth in SPV integration into the grid across all the major 
counties, HC amendment imperative to all the essential entities of the 
utility such as its prosumers, consumers and the utility itself [11]. Re
searchers applied various techniques for amendment of HC in the dis
tribution system as in [12–14]. The authors in [12] showcased a 
real-time simulation based iterative method to improve the HC of the 
distribution network. The authors considered various power system 
parameters such as voltage, current and THD as indicating parameter for 
HC analysis. Protection aspect is not considered in this work, while 
upgrading the HC of the network. In [13], the author assessed the HC of 
the active distribution network (ADN) in the presence of signal distor
tion in the distribution network. The authors also proposed a technique 
to design harmonic mitigating device to further improve the HC of the 
network. To design the filter, authors ensured the voltages and the 
currents should not violate the predefined limits in the network but, 
there is no insight about the protection due to addition of filters in the 
network. Not only with additional equipments, the authors in [14] 
proposed a reconfiguration based HC improvement solution by changing 
topology of the distribution network with the help of tie line breakers 
but by doing so the protection system may mal-operate and can lead to 
catastrophic event. Implementation of advanced techniques to improve 
the HC may cause various protection issues, as the line current of the 
upstream as well as the downstream can be contributed by the con
nected DERs. To tackle this protection concern, various protective 
measures can be considered such as re-estimated time grading of the 
protection settings, addition of additional protecting equipment, direc
tional protection and adaptive protection [15]. Adoption of latest 
adaptive settings may also cause false tripping depending on setting 
margin in case of improper hosting capacity estimation and if the setting 
margin is very less the false tripping is always a concern irrespective of 
hosting capacity calculation [15]. To invalidate such protection issues, 
authors in [16–23] adopted some of the effective fault detection 
techniques. 

Commercial protection has the disadvantage of variable accuracy 
with a change in line length. To counter this problem, in [16], the au
thors proposed ratio-based indices calculation for different types of fault 

Nomenclature 

DER Distributed energy resources 
HC Hosting Capacity 
SA Situational awareness 
HGB Histogram-based gradient boost 
ML Machine learning 
SKS Spectral kurtosis 
ADN Active distribution network 
PVDG Photovoltaic distributed generation 
SPV Solar photovoltaic 
STFT Short time Fourier transform 
DSO Distribution system operator 
PCC Point of common coupling 
CNS Conditionally nonstationary 
HMI Human machine interface 
DT Decision Tree 
NGB Normal gradient boosting 
XB Xg Boost 
RF Random forest 
CB CatBoost 
AB AdaBoost 

LGBM Light GBM 
VUG Voltage utility grid 
RHC Equivalent resistance from considered bus 
XHC Equivalent reactance from considered bus 
PDER Active power injection by PVDG 
QDER Reactive power injection by PVDG 
PC Active power demand at considered bus 
QC Reactive power demand at considered bus 
VC Voltage at considered bus 
VC Max Maximum permissible voltage at considered bus 
C1 Constant amplitude 
f Frequency 
δ Constant initial phase 
S Training set 
X New observation 
y Category that the new observation belongs 
Z Set of class labels 
F0 Initial base model function 
ŷ Predicted value 
c Weak learners 
L Categorical cross-entropy loss/ log loss  
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identification. Although detection is possible for LG and LL faults 
through the proposed technique, but for LLG faults, the accuracy is 
found to be sharply decreasing. For LLL fault identification, the scheme 
doesn’t provide any insight. With the decrease in sampling rate below 
40 kHz, the described method failed to work at its full potential. Addi
tionally, a precise design of the filter is a must to implement this fault 
detection scheme. But the inclusion of auxiliary devices for fault analysis 
in the present day is not an effective techno-economical solution. Au
thors in [17]demonstrated an impedance-based fault analysis method 
for the distribution system. Although the method proved to be prom
ising, but it lacks in performance when the photovoltaic distributed 
generation (PVDG) penetration is high. In addition to it, the perfor
mance is found to degrade with change in the network topology. The 
topological issue incurred in [17] is resolved in [18], where the authors 
discussed on high impedance fault in the distribution system. Although 
the topological concern is addressed, but this method did not give any 
insight into the integration of DERs and the requirement of high sam
pling rate. In [19], fault location is estimated in the distribution system 
with the highest accuracy, whereas no insight is given for the type of 
fault. The authors used capacitive current, considering the distribution 
system to have only underground cables, which is not feasible for all 
locations. Realising all these concerns, data-driven fault analysis 
schemes are presented in [20–23]. In [20] authors demonstrated a dif
ferential protection-based data mining procedure for fault identifica
tion. Although the proposed scheme provides efficient results, but it is 
highly unlikely to use differential protection in the distribution system 
except for the transformer. Secondly, for differential feature extraction, 
communication is required, which adds to the overall installation and 
maintenance cost. In [21], the authors utilized a wavelet-based data 
mining approach, where ten types of fault conditions are created for the 
decision tree classifier, to detect the fault or no-fault condition. The 
simulated ten types of faults are broadly classified into four types, 
namely LG, LL, LLG, and LLLG, respectively by the classifier, with 
additional input from the sequence analyzer. In the distribution system, 
it is essential to detect the faulted phase for further action required by 
the distribution system operator (DSO). In this context authors in [21] 
did not provide precise information regarding the faulted phase. It is 
eminent that due to the use of a sequence analyser, some time-delay may 
also occur for fault detection, which may not be appropriate for 
instantaneous applications. Authors in [22] proposed a wavelet 
optimization-based fault classification algorithm, which showcased 
efficient results. However, the authors did not give any insight into the 
location of the fault. Identification of faulted line section is showcased in 
[23], with the use of three ML classifiers. The authors discretized the 
features for the classifier to minimize the input. A detailed analysis due 
to variable sampling frequency on computational time as well as on 
accuracy is presented in this paper. 

To address any problem with ML, specific parameters related to an 
event need to be given as input to the ML model for learning, termed as 
the feature of the event. Spectral-kurtosis (SKS) is one of the promising 
tools for feature extraction, and these extracted features can be utilized 
as an input for the ML model to obtain an efficient result. Initially, SKS 
was limited to identifying the transients present in a signal along with 
their location in the frequency domain [24]. SKS is also used as an 
alternative to power spectral density, with the advantage of having a 
noise resilient property, i.e., SKS was able to detect transients, even in 
noisy signals or in case of various transients such as capacitor switching, 
load switching [25]. In [26], the concept of SKS is re-established on the 
basis of normalized fourth-order moment of the co-efficient for short 
time Fourier transform (STFT). This development enabled the 
multi-dimensional application of SKS that also includes power system 
protection. 

To improve the SA of active distribution network, the features should 
be calculated with the timely up-gradation of renewable integration in 
the network [2,27]. This change in HC of the network contributes to a 
change in the amount of power flow in the network, which affects the 

extracted features from signals of the network. In [28], the authors 
explained the effect of change in the power flow and the need for timely 
up-gradation of various power system parameters. The authors also 
clearly explained the need for timely up-gradation of protection coor
dination parameters for power system networks. Although in the 
available literature, analysis is done for improvement of HC using 
various methods, but analysis on the effect of a wide range of fault in the 
presence of DERs are not extensively analyzed. Additionally, improve
ment of SA with the variation in the integration of additional DERs in 
real-time, with consideration of both HC and ML is one of the major 
areas of concern, which needs to be focused on. 

1.3. Contribution 

Based on reviewed literature in subsection B, context, the major 
contributions in context to state of the art are as follows:  

i Histogram-based gradient boosting (HGB), a machine learning 
technique, is employed for fault classification as well as fault location 
identification. The classifier is trained with many scenarios that 
include wide variation in fault resistance, fault types, and locations. 
This model is tested with data that is generated in the real-time 
simulator with variation in above said parameters; thus, the 
robustness of the classifier is ensured.  

ii Spectral-Kurtosis (SKS) based feature extraction is considered in this 
study, which has high precision in analyzing the wide range of fault 
conditions.  

iii The algorithm is tested on real-time data with a wide variation of 
sampling rates for low-cost, user-friendly applications in the 
industry.  

iv The developed algorithm is tested to have high accuracy and less 
classification time. It has the potential to accommodate upcoming 
dynamic changes in the network parameters, owing to the alteration 
in HC. The algorithm can also be updated to broadcast the fault 
classification information to the nearby DSOs based on which 
network SA can be enhanced.  

v The presented work is compared with other ML techniques such as K- 
Nearest neighbour, Logistic regression, Gaussian RBF Kernel SVC, 
Gaussian naïve Bayers, Voting classifier, Gaussian RBF Kernel SVC, 
auto encoder, Decision Tree (DT), NGB, Xg Boost (XB),Random forest 
(RF), CatBoost (CB), HGB, AdaBoost (AB), and Light GBM (LGBM) to 
check its suitability over other techniques. The work is also 
compared with the available reported recent literature to justify its 
potency. 

vi The algorithm is experimented to examine its potential to discrimi
nate faults from other power system transients scenarios. 

The rest of the paper is organized as follows. Section 2 briefs the 
overview of HC assessment. Section 3 details the modeling of active 
distribution network on Typhoon HIL real-time environment. Spectral- 
Kurtosis-based feature extraction for a variety of fault signals, extrac
ted from the modeled reconfigured IEEE 33 bus distribution system, is 
resulted in Section 4. Section 5 depicts the significance of HGB technique 
for accurate fault diagnosis. Proposed methodology for SA based adap
tive fault diagnosis with amendment of HC is depicted in Section 6. 
Section 7 deals with the result and discussion based on the extracted 
features required by the classifier for training. Also, its performance is 
compared with other methods and with existing literatures. Lastly, the 
conclusion is drawn in Section 8. 

2. Brief review on hosting capacity assessment and its impact on 
fault 

The possibility of maximum allowable DER integration i.e., HC of the 
network is subjected to various power system parametric fluctuations 
such as voltage, current, and THD. These subjectives are also due to the 
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uncertainty in DERs like wind speed and solar irradiation. Additionally, 
economic constraints can also be considered as limiting factors for HC. 
However, the major restrictive indicators considered for HC enhance
ment are voltage, current and THD. Hence, for network modeling and 
HC assessment IEEE and ANSI standards are taken into consideration. 
The voltage limit for HC is set according to IEEE Std 1250, which is ± 5 
% and ampacity for HC is set according to ANSI C84.1-1989.THD, one of 
the significant indicators for HC assessment, is set according to IEEE- 
519-2014, which is 5% for the DER integrated nodes in the distribu
tion side. For calculation of the power to be injected at the point of 
common coupling (PCC) as in Eq. (1), Kirchhoff’s voltage law (KVL) is 
applied on the effective equivalent network of the active distribution 
system as in Fig. 1. 

Considering the real part of the Eq. (1), and assuming Ω≈0 (as in 
distribution system X/R≪1), Eq. (2) can be deduced. From Eq. (3), it is 
evident that the maximum DER integration depends on parameters such 
as allowable voltage limit, line parameters, and load at PCC. It is evident 
from [1] that the maximum allowable voltage level is achieved prior to 
the thermal limit; hence taking care of the maximum voltage limit, 
seldom takes care of the current limit. In Eq. (3), if the reference voltage 
is considered as 1 p.u., and the maximum allowable voltage is taken as 
1.05 p.u., then for a specific load, the maximum power injection ob
tained is found to be inversely proportional to the effective impedance at 
PCC. So, it can be deduced that with the decrease in the value of the 
effective impedance, the HC of the network increases and vice-versa 
[29]. Hence, at different nodes of the network, the HC obtained is 
different, as represented in Eq. (3). 

VC = VUG +
(PDER − PC) − j(QDER − QC)

VC < − Ω
× (RHC + jXHC)VC

= VUG +
(PDER − PC) − j(QDER − QC)

VC < − Ω
× (RHC + jXHC) (1)  

⇒VC = VUG +
(PDER − PC) − j(QDER − QC)

VC
× {(

− XHCSin Ω) + j (RHCSin Ω)+ (RHCCos Ω) + j(XHCCos Ω)}

⇒VC = VUG +
(PDER − PC)

VC
× RHC +

(QDER − QC)

VC
× XHC  

⇒VC(VC − VUG) = (PDER − PC) + (RHC + tanc×XHC)

⇒(PDER − PC) =
VC(VC − VUG)

(RHC + tan c × XHC)

⇒PDER =
VC(VC − VUG)

(RHC + tan c × XHC)
+ PC  

PHC = VC ×
(VC Max − VUG)

(RHC + XHC*tan c)
+ PC (3) 

Eq. (3), depicts the HC of a node in the active distribution network. 
Due to addition of such DERs in the distribution network nodes, the 
current demand from the grid reduces and this reduction of current also 
depends on the number of DERs connected in the network as well as on 
the size of DERs on the distribution network. This may influence the 
protection setting of the protective relay. This phenomena may be 
concerning considering the growth rate of SPV integration into the 
utility grid. This generic issue for all the utility grid may degrade the SA 
of the system engineer to a very low level. To improve such degradation 
in SA, ML approach may be beneficial. Although various protection 
philosophy can be implemented as described in [15], but capital in
vestment on equipment and on trained manpower may be economically 
as well as technically not feasible at all conditions. In this context ML 
algorithms can be utilised to detect fault and to improve SA in the 
complex distribution network. 

3. Modelling of active distribution network in typhoon HIL real- 
time environment 

For accurate analysis, real-time distribution system modelling is 
essential. Although the proposed methodology is applicable for any 

Fig. 1. Topology for hosting capacity analysis.  

⇒VC = VUG +
(PDER − PC)

VC
× {(RHCCos Ω − XHC Sin Ω) + j(RHCSin Ω + XHC Cos Ω)} − j

(QDER − QC)

VC
×

{(RHCCos Ω − XHC Sin Ω) + j(RHCSin Ω + XHC Cos Ω)}

(2)   
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distribution network, but a reconfigured IEEE-33 bus system is consid
ered for analysis of the proposed methodology. The consideration of 
reconfigured IEEE-33 bus system is due to various multi-dimensional 
positive aspects, which are detailed in [12]. It is to be noted that the 
objective of this work is to analyze the fault type and location in the 
active distribution network in the presence of DERs under variable fault 
resistance, type, and location. Hence the network with the location of 
PVDG as in [30] is experimented, as the losses obtained are low for the 
reconfigured case. The plant capacity is chosen according to the HC of 
the respective nodes as in [30]. Dynamic faults are created across the 
length of the network to collect the data for processing. 

To test the proposed methodology for fault analysis in the case of 
PVDG penetrated distribution system, accurate data is required. To 
ensure the accuracy of data, the data are collected from the model 
executed in the real-time digital simulator as in Fig. 2. The test system 
developed is in Typhoon HIL’s real-time environment, where six cores 
are used in parallel for a high sampling rate. As the proposed method
ology deals with transient analysis, the sampling rate is further increased 
by optimizing the core partition, ranging from “core 0” to “core 4”. Due 
to the involvement of the distribution system in this partitioning process 
of FPGA cores, core couplings are used. To simulate this network in a 
real-time platform, “configuration 2” in Typhoon HIL602+ device is 
considered, so that maximum number of FPGA cores can be utilised. The 
high-resolution data from the real-time simulation is recorded, which is 
as high as 2 million samples per second from the internal signal scope of 
the simulator. The recorded high-resolution data from the modeled 
distribution system although contains vital power system information; 
but it is impossible to process all frequency domain data into useful 
information. Thus to handle this issue, features are extracted from the 
available data using spectral kurtosis technique. 

4. Brief review on spectral kurtosis for feature extraction and its 
application for fault signals 

The fault signals in the power system are inherently nonstationary in 
nature. Thus, the SKS technique can be employed to indicate the 
impulsiveness of these fault signals efficiently. Authors in [31] detected 
the fault signal using SKS for a 5-bus system. Although detection is done, 
but it is impossible to draw all the required information about the event 
manually from the displayed kurtosis plots, when the data is huge. Due 
to this drawback, the method adopted in [31] cannot alone be effec
tively applied to the real distribution system, where inherently the fault 
data set will be high due to variation in location, type and resistance of 
faults. Proper calculation and selection of the SKS parameters needs to 
be done for better efficiency, which is detailed in the current section and 
Section 6, respectively. The detailed procedure for calculation of SKS 
parameters for a highly nonstationary signal is explained as follows. 

The World-Cramer decomposition theory states that any nonsta
tionary stochastic signal L(t) can be expressed as output of a linear, 
causal, and time-varying system as expressed in Eq. (4), where P(t, f) can 
be inferred as a complex envelope of L(t) at a frequency f and dU(f) as a 
unit variance orthogonal process [24,32]. Though P(t, f) is considered as 
a deterministic function, there can be many instances when it is sto
chastic due to the time datum being unknown. To accommodate this, a 
more rugged approach is developed in view of a stochastic complex 
envelope P(t,f ,a). The shape of the envelope is governed by the random 
variable ‘a’. This transforms the L(t) process as a CNS process i.e., the 
process is generally stationary except at certain outcomes ‘a’ where it is 
nonstationary. The CNS processes have flatter tail for its probability 
density function in comparison to that of its generating system. Hence, 
with time-domain randomization, CNS can be constructed for any 
nonstationary signal. The spectral moments of order “2n” of the CNS 
process can be expressed as per Eq. (5) by ensemble averaging of many 

Fig. 2. Real-time simulation model of reconfigured IEEE-33 bus distribution system.  
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outcomes for random variable ‘a’ [33]. The assumptions made in the 
equation includes P(t, f) as a time stationary random field, independent 
of dU(f) and U(t) being a white process [34]. It is worth noting that 
taking the value of n as 1 in Eq. (5) yields the classical power density 
spectrum. The SKS is finally derived from the normalized fourth-order 
spectral cumulant of a CNS process as represented in Eq. (6). Factor 2 
is used in Eq. (6) instead of factor 3 (which is generally used in classical 
cumulants definition) because dU(f) is a circular random variable. 

The SKS can be computed in many ways. The most widely used 
method is the STFT-based SKS [32,35]. The STFT of a signal L(n) having 
an analysis window w(n) with size NW and a defined temporal step Q can 
be written as per Eq. (7). The length of the window is so chosen such that 
the analysis window is able to cover the quasi-stationary part of the 
signal and it is able to sample the complex envelope in a faster manner, 
lest some information is lost [32]. Thus, the spectral moment of order 
“2n” of Lw(kQ, f) can be written as per Eq. (8), where Δ

=
〈.〉k is called a 

time aggregator operator over an index ‘k’. Hence, Eq. (9) shows the 
STFT based spectral kurtosis for a signal [26,36] . 

L(t) =
∫+∞

− ∞

e2πjftP(t, f )dU(f ) (4)  

M2nL(f )
Δ
=

E
{
|P(t, f )dU(f )|2n

}/
df = E

{
|P(t, f )|2n

}
.M2nU (5)  

SKSL(f )
Δ
=

M4L(f )
M2

2L(f )
− 2, f ∕= 0 (6)  

Lw(kQ, f )
Δ
=

∑∞

n=− ∞
L(n)w(n − kQ)exp(− 2πjnf ) (7)  

M̂2nL(f )
Δ
=

〈
|Lw(kQ, f )|2n

〉

k
(8)  

ŜKSL(f )
Δ
=

M̂4L(f )

M̂
2
2L(f )

− 2, |f − |2|| > N − 1
W (9)  

SKS, being a fourth-order spectrum, offers resistance to noise, which 
helps in depicting the impulsiveness of the signal more vividly. Thus, the 
electrical anomalies in a power system can be detected more accurately 
with SKS. Additionally, SKS is computationally faster and less expensive 
tool [35–37]. Thus, SKS takes low values for non-transient signals while 
high values for transient signals. Therefore, SKS is competent in 
capturing signal transients effectively. 

y(t) = C1sin(2πft + δ) (10)  

ŜKSL(f )
Δ
=

M̂4L(f )

M̂
2
2L(f )

− 2 =
E
{
|c1|

4
}

E
{
|c1|

2
} − 2 = 1 − 2 = − 1 (11) 

To depict the applicability of SKS in fault detection and classifica
tion, several types of faults are created between nodes 18 and 33 of the 
modelled IEEE-33 bus reconfigured distribution system as shown in 
Fig. 2. The graphs of SKS for these different fault condition is presented 
in Figs. 3–6, respectively. For obtaining the SKS, a window of Hanning 
type with size 256 having 75% overlap is employed for SKS as advocated 
in [34,23]. In the SKS graph, a stationary component is indicated by a 
value of − 1. This can also be proved analytically with an example of a Fig. 3. SKS graphs for phase currents during AB fault for reconfigured IEEE-33 

bus distribution system. 

Fig. 4. SKS graphs for phase currents during ABC fault for reconfigured IEEE- 
33 bus distribution system. 

Fig. 5. SKS graphs for phase currents during ABG fault for reconfigured IEEE- 
33 bus distribution system. 

Fig. 6. SKS graphs for phase currents during AG fault for reconfigured IEEE-33 
bus distribution system. 
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sinusoid. A constant amplitude (C1) and frequency (f) sinusoid signal 
with a constant initial phase (δ) can be represented as in Eq. (10). The 
SKS can then be calculated as per Eq. (11). The nonstationary (tran
sients) components of the signal are indicated by positive peaks [37,38]. 
Thus, as seen from the graphs, the nature of the SKS is different for 
various faults. This indicates that the nature of the transients varies with 
the fault types, and the differences are effectively captured in the SKS 
graphs. 

The graphs of SKS as in Fig. 3–6, shows different values for different 
types of faults, is utilized as an input to the multiple ML classifiers to 
analyse the fault location and fault type. 

5. Application of HGB technique for accurate fault prediction 

Ensemble method uses a conglomeration of models to achieve a 
better performance result. The elementary apprehension for the success 
of ensemble method are statistical, computational, representational, 
bias-variance decomposition, and strength correlation. Given the theo
retical justifications behind ensemble methods, a vast number of models 
under ensemble method are well equipped for classification, regression, 
and optimization fields. Since the problems addressed in fault classifi
cation and fault location determination are supervised learning classi
fication task, with multiple labels, methods are explained in this section 
with a perspective to address classification difficulties. Classification 
aims to identify a discrete category of new observation by studying a 
training set (S) of data [with ‘m’ rows/ data samples and ‘n’ features] as 
represented by Eqs. (12)–(13), where ‘X’ is the new observation as a 
feature vector with features [F1, F2, F3, …, Fv], ‘y’ is the category that the 
new observation belongs to, f (⋅) is the trained classification function, ‘α’ 
is the classification function’s parameter set, ‘Z’ is the set of class labels.  

y = f (X, α), y ∈ Z                                                                         (12)  

X = [x1, x2, x3, …., xv]                                                                   (13) 

Boosting follows a sequential mechanism where weak learners are 
sequentially produced during the training phase. The weak learners are 
hence trained on different distributions of the training set to create weak 
rules. The predictions from the multiple generated weak learners are 
combined to form one strong decision rule that can correctly classify the 
labels. The parameters required as input are the number of classifier 
models or weak learners (say ‘t’) and the training dataset (having size of 
‘m’ rows/records). The steps included in the normal gradient boosting 
(NGB) algorithm are as follows:  

1 The first base learners take the complete training dataset and assigns 
similar weights to each of the records or observations in the dataset.  

2 When some error occurs in the prediction given by the first base 
learners, greater attention is given to those records by assigning more 
weights to them. The second base learners by then are applied again 
to the total training dataset with ‘m’ rows.  

3 Step 2 iterates for all the base learners until a better accuracy is 
achieved by aggregating all the base learners’ decision rules. 

In the NGB method, decision tree-based weak learners are kept on 
adding sequentially and the model is developed. The main disadvantage 
of gradient boosting models is that the time complexity of the models are 
high because of which the model takes a longer time to train. This is 
because the trees have to be added sequentially and cannot be trained in 
parallel, exploiting multiple CPU cores. Hence, to have a better 
computing efficiency alongside fast training, HGB model evolved. 

Since most of the algorithms under ensemble method requires the 
use of decision trees, hence the speed of the algorithms gets constricted 
by the number of rows and features in the training dataset resulting in 
slow construction of the trees. Therefore, the building of decision trees is 
speeded up in HGB by reducing the quantity of values of the continuous 
set of features through discretization or binning into a fixed number of 

cumulative buckets. Tailored implementation of histograms act as an 
efficient data structure for binning of the input data during the con
struction of the decision trees. The coarse approximation of putting into 
integer brackets does impact the performance of the HGB models to a 
greater extent, but it helps dramatically of accelerating the algorithm in 
terms of building of the decision trees. 

The inputs of a HGB model comprises a training dataset (with ‘m’ 
rows/records and ‘n’ columns/features), a number of weak learners (c) 
and a loss function which is differentiable as represented by Eq. (14), 
where, ‘L’ is categorical cross-entropy loss/ log loss since there are 
multiple class labels that has to be predicted. The steps followed in HGB 
are as follows:  

1. A base model is computed which provides a constant value as its 
prediction output presented in Eq. (15). 

Where, 
F0 is the initial base model function, 
ŷ is the predicted value which is its constant for all ‘m’ observations; 
Finding its minimum value is a 1-dimensional optimization problem 
where first order derivative of the loss function with respect to ŷ, 
gives the output of minimum error.  

2. Iterate for all the weak learners i.e. k = 1 to ‘c2’:  
a Pseudo-residuals are computed for every observation taking the 

actual value and the predicted value using the formula in Eq. (16), 
where, i = 1, 2, 3, …, m for all rows/ records/ observations.  

b A weak learner hb(x) is trained on the pseudo-residuals, using the 
same dataset feature columns, with the residuals as the predictor 
column label. Therefore, the residual column produced by Ri,k acts 
as the actual label, which helps in training. The new column 
produced namely hb(x) = R̂i, b is the predicted value after 
training.  

c The multiplier/ learning rate αb is computed by solving the 
following optimization problem as per Eq. (17).  

d The model is updated as per Eq. (18).  
3. Finally, the output Fc(x) is obtained, which can be represented by 

Eq. (19):  

L (y, F(x))                                                                                    (14) 

F0〈x〉 = argmin
ŷ

∑m

i=1
L〈yi, ŷ〉 (15)  

Ri,b = −

[
∂ L〈yi,Fb− 1(xi)〉

∂ Fb− 1(xi)

]

(16)  

αb = argmin
α

∑m

i=1
L(yi, Fb− 1(x)+ αhb(x)) (17)  

Fb(x) = Fb− 1(x) + αbhb(x) (18)  

Ft(x) = F0〈x〉 + α1h1(x) + α2h2(x) + … + αtht(x)

= F0〈x〉 +
∑t

i=1
αihi(x) (19)   

The classifiers need data for the preparation of its training and 
testing dataset. While the accuracy of the classifiers increases with the 
increase in the number of data features, but it comes at the cost of 
increased computational complicacy, time, and involved budget. Thus, 
the number of data features needs to be optimized so that a balance is 
achieved between accuracy, computational complicacy, time, and cost. 
Fig. 7, shows the overall flow of the work. 
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6. Proposed methodology for situational awareness based 
adaptive fault diagnosis with hosting capacity amendment 

Precise SA about unforeseen events to the control engineers and 
proactive legitimate decision that is most suitable to an event, is dis
cussed in this proposed strategy. The proposed methodology considered 
can be represented as in Fig. 7. The methodology used can be summa
rized in the following points: 

a The steady-state analysis is performed considering the PVDG speci
fication that the DSO plans to integrate in the distribution system.  

b The analysis of the HC with the integrated PVDG in the distribution 
grid is performed. 

c The real-time modeling of the analyzed network as in (b) is per
formed in Typhoon HIL, and all possible fault scenarios are 
generated.  

d The features of SKS are obtained from these generated scenarios that 
are fed to the ML classifier for fault classification and fault location 
detection. For the initial training of the classifier as well as for 
retraining, the procedure is followed as discussed in Section 5.  

e Generated fault signal is fed to ML classifier, checked if classifier 
model is able to distinguish and locate the faults correctly.  

f Update the HC in the network. If the altered HC is less than and equal 
to ‘ε’ no up-dation is required in the classifier i.e, retraining of the 
classifier is not needed.  

g If the altered HC is greater than ‘ε’, training of the classifier is again 
executed with the new features obtained after additional DER 
integration. 

These steps are performed for every additional PVDG integration. 
The extend of PVDG integration whose value is greater than ‘ε’, may 
need retraining of the model, which will ensure the highest degree of SA 

with negligible investment, for accurate fault location and type predic
tion. It is worth noting that the value of ‘ε’ and its selection totally de
pends on the utility. 

To clearly understand the work flow, the process of data generation, 
feature extraction, and choosing the suitable features for training the 
classifier is detailed in the Section 7. 

7. Result and analysis: data generation, feature extraction, 
feature selection and performance evaluation 

7.1. Real-time data generation for different fault location and type 

To mimic the actual power system distribution network, the datasets 
required for the classifier are taken from real-time Typhoon HIL simu
lator for maximum reliability and accuracy. The data required for the 
training as well as the testing purpose of the targeted classifier are 
considered with variable fault resistance, location, and type as in Table 1 
for the considered IEEE 33 bus reconfigured distribution system as in 
Fig. 2. The fault data are collected from various locations throughout the 
network. For classification of fault type, the predicted output is 
considered as LG, LLG, LLL, and LL fault. For fault location detection, the 
predicted output is considered as the location between different nodes. 

Fig. 7. Proposed methodology for situational awareness based adaptive fault diagnosis with hosting capacity alteration.  

Table 1 
Real-time data generation for different fault scenarios in reconfigured IEEE 33 
bus distribution system.  

Classification 
task 

Description Dataset size 
Training Testing Total 

Fault type Different types of fault with 
variable fault resistance at 
different location 

1402 468 1870 
Fault location 1447 483 1930  
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To proceed with the development of the classifier, thirty features are 
generated (IAn, IBn, ICn), n∈ N, 0 ≤ n ≤ 10 from the faulted current sig
nals. These thirty features are the SKS values normalized at frequencies 
ranging from 0.1 to 1 for each phase current signal. For the determi
nation of the efficient features to be utilized in the classifier, a clear 
picture of correlation mapping among all the possible features are 
needed to be performed. Fig. 8, presents a heat map of Pearson’s cor
relation matrix plot among all the possible features. The diagonal values 
in Fig. 8 i.e., the value 1 shows the maximum correlation between the 
features and the value − 1 shows the minimum co-relation between the 
features. For better clarity, the numerical values of the heat map plot are 

rounded off upto two places. Table 2 shows the details of the dataset 
utilized for the fault classification problem. During the development of 
the classifier, 75% of the dataset are used for the training purpose and 
25% of the data are used for the testing purpose. 

7.2. Feature selection and accuracy optimization for identification of fault 
type 

The co-relation plot in Fig. 8 shows thirty features considered for 
each set of data, which is time-consuming. This problem can be solved 
by optimally choosing the set of least co-related features contributing to 

Fig. 8. Pearson’s correlation plot for all the features to identify the fault type tested on reconfigured IEEE-33 bus distribution system.  

Table 2 
Details of fault type dataset for reconfigured IEEE-33 bus distribution system.  

Fault type AB AC BC AN BN CN ABN ACN BCN ABC 

Number of faults 187 per fault 
Training Dataset 1402 
Testing Dataset 468  

Fig. 9. Feature importance value for fault classification in reconfigured IEEE-33 bus distribution system.  
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the highest accuracy from the co-relation plot. However, it is very 
tedious to determine the least co-related features directly from the plot. 
To get a clearer picture of this, the histogram in Fig. 9 is constructed, 
which represents the feature importance value for the optimal selection 
of features in order to gain maximum accuracy with minimal features. 
With numerous data analysis collected from the real-time simulator, the 
threshold for feature importance value is chosen as 0.02. To verify the 
claimed threshold value, detailed analysis, with different number of 
input features along with the multiple ensemble modes are presented in 
Table 3 namely Decision Tree (DT), NGB, Xg Boost (XB),Random forest 
(RF), CatBoost (CB), HGB, AdaBoost (AB), Light GBM (LGBM). It can be 
observed from Table 3 that different number of features are considered 
for the same row. This is due to the fact that the features exceeding the 
threshold feature value are distinct for different types of algorithms. 
From the results produced in Table 3 for reduced features, it can be 
observed that HGB with 16 features result in the highest accuracy of 
96% for detection of fault type, as compared to the other seven methods 
with various input features. 

To explain the learning of HGB in a more descriptive manner, a 
pictorial view of the learning procedure for predicting fault type in the 
considered reconfigured IEEE -33 bus system with three features are 
shown in Fig. 10. The reason for showcasing the pictorial representation 
only for three features is due to the constraint in space as the total 

Table 3 
Accuracy optimization with reduced features for fault type determination in 
reconfigured IEEE-33 bus distribution system.  

DT NGB XB RF CB HGB AB LGBM 

0.89 
(30) 

0.93 
(30) 

0.94 
(30) 

0.95 
(30) 

0.95 
(30) 

0.95 
(30) 

0.95 
(30) 

0.96 
(30) 

0.87 
(26) 

0.94 
(26) 

0.94 
(26) 

0.96 
(25) 

0.94 
(26) 

0.95 
(26) 

0.96 
(26) 

0.96 
(26) 

0.89 
(21) 

0.93 
(21) 

0.95 
(21) 

0.96 
(21) 

0.95 
(21) 

0.96 
(21) 

0.94 
(21) 

0.95 
(21) 

0.88 
(17) 

0.92 
(16) 

0.95 
(16) 

0.93 
(17) 

0.95 
(16) 

0.94 
(18) 

0.94 
(16) 

0.94 
(16) 

0.86 
(16) 

0.91 
(14) 

0.94 
(15) 

0.95 
(16) 

0.94 
(15) 

0.96 
(16) 

0.93 
(14) 

0.93 
(14) 

0.85 
(14) 

0.91 
(11) 

0.93 
(14) 

0.95 
(14) 

0.93 
(14) 

0.94 
(14) 

0.93 
(11) 

0.95 
(12) 

0.84 
(10) 

0.89 
(9) 

0.91 
(9) 

0.92 
(13) 

0.92 
(9) 

0.93 
(9) 

0.89 
(9) 

0.91 
(7) 

0.80 
(7) 

0.84 
(6) 

0.89 
(6) 

0.90 
(7) 

0.88 
(6) 

0.89 
(6) 

0.88 
(8) 

0.89 
(6) 

0.76 
(3) 

0.76 
(3) 

0.79 
(3) 

0.82 
(3) 

0.79 
(3) 

0.82 
(3) 

0.81 
(3) 

0.80 
(3)  

Fig. 10. Predictions of fault type using HGB method.  

Fig. 11. Confusion matrix considering reduced features for determination of fault types tested for reconfigured IEEE-33 bus distribution system.  
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number of figures generated will be nCr. Where ‘n’ represents a number 
of features and ‘r’ represents 2 as it is a 2D figure. It shows the training as 
well as the prediction of the HGB. The colored surfaces behind the dots 
showcase the training procedure, and the dots show the prediction 
values. If the background surface color and the dot color matches, the 
condition is explained that the prediction is correct with respect to its 
training. If dot and the background have different colors, then the pre
diction is different from the training, which is not a favorable condition. 

From the above results as in Table 3 and Fig. 10, it is evident that 
HGB with sixteen features have the maximum efficacy with minimum 
number of features. This unique characteristic makes HGB suitable for 
fault detection in the active distribution system. Thus, in the present 
work, HGB with 16 features are considered for fault classification. These 
16 features include IA1, IA2, IA3, IA4, IA7, IA9, IA10, IB1, IB2, IB5, IB7, 
IB10, IC1, IC2, IC3 and IC10, respectively. The fault detection results 
considering only 16 features at a time with the accuracy of 96 % is 
shown in confusion matrix in Fig. 11. The “Y axis” represents the true 
value and “X axis” represents the predicted value by the classifier. The 
diagonal elements represent the correct prediction by the classifier and 
the off-diagonal element represents the flawed prediction by the classier. 
The dark color shows that the predicted values are the same as the true 
values. With the fade in the color depth, the predicted value diverges 
from the true value as per the color scale showcased in Fig. 11. 

7.3. Feature selection and accuracy optimization for identification of fault 
location 

For fault location estimation, a similar approach is adopted, i.e., the 
Person’s correlation plot is utilized to find out the correlation among the 
input features. The total data set selected for fault location identification 
is 1930. From the data set of 1930, 1448 data sets are used for the 
training purpose. The remaining 482 data sets are used for testing pur
pose for fault location. All the features shown in the Person’s correlation 
plot for training as well as testing can be considered as in Fig. 8. 
Consideration of all the features for training as well as testing may not 
result in the highest accuracy, although it is time-consuming. In such a 
case, the input feature reduction according to the feature importance 
value can provide better results. Fig. 12 represents the selection of 
important features for the HGB algorithm, where with minimum of 21 
features, the attained accuracy is 83%. 

Table 4 result verifies the importance of claimed feature reduction 
for improving the accuracy with fewer features, as shown in Fig. 12. 
With rigorous real-time data analysis, the feature importance value is 
selected as ‘0.03’. With a specific feature importance value, it is 
observed that different algorithms have a different number of input 
features and accuracy. For example, with a feature importance value of 
0.03 the DT, NGB, XB and RF algorithm shows the accuracy of 66%, 
74%, 81%, and 79%, respectively. Thus, in the present work, HGB with 
21 features is considered for fault location determination. These 21 

features include IA2, IA3, IA7, IB1, IB2, IB4, IB5, IB6, IB7, IB8, IB9, IB10, 
IC1, IC2, IC3, IC4, IC5, IC6, IC7, IC8, and IC10 respectively. 

Considering the reduced 21 features as in Table 4 for the HGB al
gorithm, the confusion matrix is built for understanding of correctness 
regarding the location identification as in Fig. 13. To verify HGB algo
rithm’s performance for identifying fault type and location in the active 
distribution system, the performance of other methods such as K-Nearest 
neighbour, Logistic regression, Gaussian RBF Kernel SVC, Gaussian 
naïve Bayers, Voting classifier, Gaussian RBF Kernel SVC, auto encoder, 
DT, NGB, XB, RF, CB, AB and LGBM needs to be checked under the 
identical condition as that of the HGB algorithm. Fig. 14 shows a 
detailed comparison of these mentioned methods under identical con
ditions. It is to be observed that the HGB algorithm has the highest ac
curacy, with a minimum number of features. A time-based performance 
analysis is also performed in details for both fault type as well as location 
identification. In this context, utilization of selected optimal values as in 
Figs. 9 and 12 is very crucial, as this decides the execution time effi
ciency. A detailed time efficiency performance of the projected frame
work is displayed in Table 5. From Table 5; it can be inferred that with 
optimized feature importance values, 39.39% time is reduced for fault 
type detection, which is 0.20 ms. Similarly, the time required for fault 
location identification is reduced by 13.09%, which is to 0.73 ms from 
0.84 ms. 

7.4. Performance comparison of the proposed method with existing 
reported methods in the literature 

A detailed comparative analysis of the proposed method existing 
literature are tabulated in Table 6. In [21], the accuracy varies between 

Fig. 12. Feature importance value for fault location in reconfigured IEEE-33 bus distribution system.  

Table 4 
Accuracy optimization with reduced features for fault location identification in 
reconfigured IEEE-33 bus distribution system.  

DT NGB XB RF CB HGB AB LGBM 

0.68 
(30) 

0.77 
(30) 

0.82 
(30) 

0.79 
(30) 

0.78 
(30) 

0.82 
(30) 

0.83 
(30) 

0.82 
(30) 

0.66 
(26) 

0.76 
(26) 

0.82 
(26) 

0.81 
(25) 

0.78 
(26) 

0.83 
(26) 

0.83 
(26) 

0.83 
(26) 

0.66 
(21) 

0.74 
(21) 

0.81 
(21) 

0.79 
(21) 

0.79 
(21) 

0.83 
(21) 

0.80 
(21) 

0.82 
(21) 

0.65 
(17) 

0.73 
(16) 

0.80 
(16) 

0.80 
(17) 

0.76 
(16) 

0.79 
(18) 

0.80 
(16) 

0.79 
(16) 

0.66 
(16) 

0.72 
(14) 

0.77 
(15) 

0.79 
(16) 

0.77 
(15) 

0.78 
(16) 

0.79 
(14) 

0.79 
(14) 

0.66 
(14) 

0.71 
(11) 

0.76 
(14) 

0.77 
(14) 

0.77 
(14) 

0.78 
(14) 

0.79 
(11) 

0.77 
(12) 

0.63 
(10) 

0.68 
(9) 

0.76 
(9) 

0.77 
(13) 

0.70 
(9) 

0.73 
(9) 

0.79 
(9) 

0.76 
(7) 

0.62 
(7) 

0.59 
(6) 

0.72 
(6) 

0.72 
(7) 

0.69 
(6) 

0.70 
(6) 

0.78 
(8) 

0.71 
(6) 

0.54 
(3) 

0.55 
(3) 

0.60 
(3) 

0.65 
(3) 

0.52 
(3) 

0.62 
(3) 

0.65 
(3) 

0.63(3)  
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Fig. 13. Confusion matrix considering reduced features for fault location.  

Fig. 14. Comparison of various model performance with respect to HGB for (a) Fault location, (b) Fault type.  
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85 and 94% as compared to the proposed method. Although the detec
tion accuracy is good in [20], the technique relies on a differential 
communication mechanism which may diminish the reliability of the 
overall system. The accuracy of the proposed method as per Table 6 is 
not only better over [22], but also when tested in wide range of sampling 
frequency, the accuracy is found to remain unchanged under wide 
variation in sampling frequency. Due to the capability of accurate fault 
detection under wide range of sampling frequency, micro - PMUs and 
improved IEDs at substation with variable sampling time can be used in 
this proposed method. The fault detection time in the proposed method 
is 0.20 msec which is very negligible as compared to the method 
explained in [23]; additionally, the accuracy of the proposed method is 
high as compared to the methods in [21–23]. The detection accuracy for 
[9,10] is found to be 100% and for the study the authors consider only 
one node of the utility, whereas the proposed method is applied to all the 
nodes of the reconfigured IEEE 33 bus distribution system. The authors 
in this present work applied SVM method as in [9,10], but the accuracy 
is found to be low, which is 55.3% and 35.3% for fault type and location 
detection respectively. Additionally, the authors set sampling time of 5 
msec i.e, 4 samples per cycle as depicted in Table 6, which may not able 
to capture fast transients. Unlike other literature explained in Table 6, 

the proposed method also considers the HC of the network for the fault 
analysis. 

With the amendment of HC in network the proposed HGB classifier is 
tested to accurately comprehend the SA of the network. The detailed 
analysis for various possible conditions are tested and tabulated in 
Table 7. 

With the change in HC beyond ‘ε’, the training may be required 
depending on the application. For fault type detection, the training is not 
required as the proposed ML algorithm will be able to distinguish these 
irrespective of the variation in HC, but it is preferable to train the model 
to have maximum accuracy. In case of fault location, the model need to 
be retrained to give accurate fault location in the ADN. 

7.5. Performance of the proposed method in other transient scenarios 

In the aforementioned sections, the algorithm has been trained and 
tested with fault scenarios only. However, in the modern distribution 
grid, there are some scenarios present which generates transients [25]. A 
fault detection algorithm must be able to differentiate between these 
transients. Different scenarios of transients are created, i.e. transients 
due to islanding, sudden load addition and curtailment, switching 
capacitor branch. Islanding is a scenario which causes transients that 
appears similar to fault transients. Islanding of ADN is a scenario, when 
the ADN is disconnected from the main grid either advertently or 
inadvertently. The island is caused either due to a fault, equipment 
failures, human error or due to some natural calamity. The algorithm is 
tested for islanding caused due to fault and due to other non-fault rea
sons. In case of non-faulted scenarios, the islanding is done by opening of 
respective circuit breakers manually. The results are tabulated in 
Table 8. It is observed that the algorithm appropriately functions and 
identify fault when islanding occurs due to fault. However, it shows no 
fault in case when islanding occurs due to some other reasons. Other 
power system scenarios that generates transients are sudden load 
connection or load curtailment and capacitor bank switching. All these 
cases are tested for the proposed algorithm as detailed in Table 8. The 
load connection scenarios are simulated by connecting additional load 

Table 5 
Time based performance analysis of HGB method.   

Fault type feature importance Fault location feature importance 
Without optimization With optimization Without optimization With optimization 

Time (in mSec) 0.33 0.20 0.84 0.73 
% Improvement - 39.39 - 13.09  

Table 6 
Comparison with existing literatures.  

Technique 
Parameters 

Proposed [20] [21] [22] [23] [9,10] 

Detection time 0.20 msec NA NA NA 33.79 msec 40 msec 
Hosting capacity considered Yes No No No NA NA 
Fault detection accuracy 96% 99.7% 85–94% 95.63% 92.52% 100% 
Fault detection accuracy dependence Independent On differential communication system NA NA On sampling frequency NA 
Fault location detected Yes No No No No NA 
Samples / Cycle 20-2K NA NA 64 NA 4 
Real-time validation Yes No Yes No No Yes  

Table 7 
Testing HGB algorithm based on HC amendment.   

Cases Differentiable as per previous trained classifier? Retraining required? Differentiable as per new trained classifier 

Fault Type Variation in HC beyond ‘ε’ Partially Yes Yes 
Variation in HC within ‘ε’ Yes No Yes 

Fault Location Variation in HC beyond ‘ε’ Dependent on ‘ε’ Yes Yes 
Variation in HC within ‘ε’ Yes No Yes  

Table 8 
HGB algorithm tested for other transient scenarios.  

Scenarios Description Is fault 
detected? 

Island Caused due to fault Yes 
Caused due to other reasons No 

Sudden additional load 
connection 

Loads of 100 kW at node 21 No 
Loads of 100 kW, 50 kVAr at 
node 26 

No 

Sudden load curtailment Loads of 60 kW, 30 kVAr at 
node 5 

No 

Loads of 150 kW, 70 kVAr at 
node 31 

No 

Capacitor bank switching 100 kVAr No 
400 kVAr No  
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of 100 kW at node 21 and 100 kW, 50 kVAr at node 26 respectively. 
Similarly, load curtailment scenarios are simulated by disconnecting the 
rated loads at node 5 and 31 respectively. Two scenarios of capacitor 
switching of rated value of 100 kVAr and 400 kVAr are considered. As 
observed from Table 8, the algorithm does not baffle to detect fault with 
these transients. This showcases that the algorithm can safely be 
employed in practical power systems. 

8. Conclusion 

The integration of DERs, smart metering, and monitoring devices 
leading to escalated automation is reforming the conventional distri
bution system to smart distribution system (SDS). This has transformed 
the power distribution system from a data deficit to a data surplus sys
tem. Thus improvement of reliability of SDSs demands enhanced 
network SA with the amplified perception, comprehension, and pro
jection for precise decision making with the boon of accessibility of real- 
time network data. 

Taking aforesaid conditions, it is indispensable to apply ML to data- 
rich SDS. Although these available high-resolution data are capable of 
projecting a clear SA about the power system events, but most of the 
data could not be used efficiently. In context to this, the paper proposes 
an adaptive ensemble learning-based fault classification methodology 
with alterations in the HC for a PV penetrated active distribution 
network. In this work, the algorithm classifies fault and also determines 
the location of the fault by analyzing the fault signals with SKS. Several 
features are extracted with SKS which are fed to a HGB ML classifier. The 
algorithm proves to have high efficiency and low computational time 
when compared with other methods such as K-Nearest neighbour, Lo
gistic regression, Gaussian RBF Kernel SVC, Gaussian naïve Bayers, 
Voting classifier, Gaussian RBF Kernel SVC, auto encoder, DT, NGB, XB, 
RF, CB, AB and LGBM. On comparison of the proposed method with the 
existing literature, the proposed method proved to be noteworthy based 
on tested parameters. It also depicts it capability in distinguishing faults 
from other power system transients. 

Another advantage of the algorithm includes the facility to update 
the classifier when DSOs plan to integrate additional PV to enhance the 
HC of the network. The developed algorithm is tested for real-time 
compatibility using Typhoon HIL environment, which guarantees the 
accuracy and practical applicability of the method. 
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