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Figure 1: A bus company has to choose amongst various electric buses with different battery capacities and state of charge for a variety of trip/route conditions.
The conditions might vary in different parameters (e.g., road type, traffic, driving behavior, environmental factors, etc.). To optimize for route planning, battery
sizing, range estimation, one has to accurately predict the Total Energy Consumption for each of these trip conditions. In this paper, we use a data-driven approach
to energy consumption modeling.

ABSTRACT
Accurately predicting the energy consumption of an electric vehicle
(EV) under real-world circumstances (such as varying road, traffic,
weather conditions, etc.) is critical for a number of decisions like
range estimation and route planning. A major concern for electric
vehicle owners is the uncertain nature of the battery consumption.
This results in the “range anxiety” and reluctance from users for
mass adoption of EVs, since they are concerned about untimely
drainage of battery. Even at the organizational level, a company
running a fleet of electric vehicles must understand the battery
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consumption profiles accurately for tasks such as route and driver
planning, battery sizing, maintenance planning, etc.

In this paper, firstly, we highlight the challenges in modelling
energy consumption and demonstrate the nature of data which is
required to understand the energy consumption of electric vehicles
under real-world conditions. Then, through a large and diverse
dataset collected over 23,500 hours spanning ≈460,000 km with 27
vehicles, we demonstrate our two-stage approach to predict the
energy consumption of an EV before the start of the trip. In our
energy consumption modelling approach, apart from the primary
features recorded directly before the trip, we also construct and pre-
dict secondary features through an extensive feature engineering
process, both of which are then used to predict the energy con-
sumption. We show that our approach outperforms Deep Learning
based modelling for EV energy consumption prediction, and also
provides explainable and interpretable models for domain experts.
This novel method results in energy consumption modelling with
< 5% of Mean Absolute Percentage Error (MAPE) on our dataset
and significantly outperforms state-of-the-art results in EV energy
consumption modeling.
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1 INTRODUCTION
Electric vehicles are a certain part of our future. With a focus on
sustainability, more and more governments and organizations are
adopting electric vehicles [26]. When running on batteries, accu-
rate estimation of the energy usage is critical. From the user’s
perspective, uncertain estimates of energy consumption lead to a
“range anxiety" [19, 20]. The user is not sure how long the vehicle
is going to last and ends up charging the vehicle more frequently
than required. Studies [14] show that vehicles typically use only
75-80% of battery capacity while driving. This uncertain nature of
energy consumption also proves to be a challenge for organizations
running fleets of electric vehicles. Tasks like route planning, fleet
management, determining accurate pricing, battery maintenance
costs, etc. are greatly affected by the ability to estimate the energy
required for operations [15, 17]. Other infrastructure like charging
station locations and schedules also depend heavily on accurate
estimates of energy consumption by the vehicles [27].

Accurate energy consumption is a difficult problem due to its
dependence on a variety of factors – (1) Vehicle Dynamics (2) Auxil-
iary Devices (3) Road Conditions (4) Weather Conditions (5) Traffic
Conditions (6) Driver Behavior (7) Battery Characteristics, and,
(8) Manufacturing Variability. Several models have been proposed
for modeling the energy consumption in electric vehicles [2, 6, 23].
These types of models can be classified as analytical, computational
and statistical models [18]. The analytical approach refers to mod-
eling every part of the energy consumption, namely, the motor
efficiency, power-train efficiency, and, the energy restored using
regenerative braking in an analytical physics-based manner. This
allows a much deeper understanding of the operating condition
assumptions and the range of the vehicle is estimated based on
the initial state of charge of the battery and the energy consump-
tion based on the vehicle model. The statistical approach, goes
backwards from system level data and uses machine learning al-
gorithms to estimate the typical energy usage for a certain set of
driving conditions. However, the statistical methods restrict them-
selves to using data from the vehicle operation itself. On the other
hand, computational methods use higher level data like the GPS
coordinates, driving behaviour estimation, weather conditions, etc.
in their modeling and therefore refrain from a strictly analytical
approach.

In this work, we use a computational modeling approach to
model the Total Energy Consumption (TEC) – energy consumption
in kWh for a specific trip – for use in an organizational setting to
make decisions such as route optimization, range estimation, facil-
ity location and fleet management. The distinction of application
is important since we model TEC on a trip-level before the trip
starts. Therefore, we cannot use the data generated during the trip
for energy consumption estimation. Thus, the goal of this work is
to accurately predict the energy consumption of the trip before the
start, using information obtained before the start of the trip. To this
end, we develop a novel machine learning pipeline to accurately
estimate the Total Energy Consumption (TEC) per trip for a wide
variety of scenarios. Our machine learning pipeline provides < 5%
Mean Absolute Percentage Error (MAPE) in energy estimation. We
achieve this using a two-stage energy-estimation approach. We use
a primary set of features readily available before the start, such
as trip distance, trip duration, etc., to predict a set of secondary
features (which are constructed through extensive feature engineer-
ing process), like braking frequency, number of stops, etc. Then,
both the primary and secondary features are used in conjunction
to regress the energy consumption for the entire trip. The key nov-
elty of this work is: (1) construction of features that provide deep
understanding of energy usage, (ii) predicting these features ahead
of trip without any trip data, and (iii) showcasing the applicability
of these features to model energy consumption accurately on our
dataset and also a public dataset. We also compare this approach
with the deep learning paradigm of learning features directly from
data. Apart from getting better accuracy with our approach, our
pipeline is also explainable and fully debuggable.

In this paper, we mostly focus on electric buses (eBus), however,
the proposed approach can also be applied to other EVs such as
cars (as we show in Section 6.5). The current public datasets to
evaluate the proposed approach lack in the following ways: (1) The
amount of data available for EVs, is fairly limited. (2) The attributes
recorded might not be enough for accurate estimation of energy
consumption. (3) There are no datasets available for electric buses
operating in a wide variety of passenger loads. To overcome these
issues, we collect our own dataset from a fleet of electric buses
serving the population in a major city. We collected data from 27
buses running over 23,500 hours with a cumulative distance of
459,326 km. We collect 128 features concerning various aspects
of the trip including weather conditions, auxiliary devices, traffic
density, geographic information, etc. Specifically, we also collect
driver behaviour attributes like harsh braking, harsh acceleration,
etc. during our data collection. Apart from detailed evaluation of
the proposed model on our dataset, we also show the applicability
of the model and features learnt to another public dataset.

Contributions. Our key contributions are the following:
(1) We provide insights on the features to be recorded for the

effective and reliable energy consumption model of a large
electric vehicle fleet. We demonstrate this with a dataset,
collected from 27 eBuses.

(2) We employ an extensive feature engineering process lever-
aging domain knowledge to highlight the important factors
for a computational approach and present a novel two-stage
machine learning pipeline for accurate energy estimation.
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(3) We compare our method with end-to-end deep learning base-
lines and show that even deep learning methods are not able
to construct the intermediate features reliably that we are
able to derive.

(4) We extensively evaluate and validate the proposed model on
our dataset with case studies of different decisions including
longevity and generalization to new routes and vehicles. Our
proposed models are fully explainable and debuggable.

2 RELATEDWORK
We focus our review of related work on computational models of
energy consumption. There are two primary aspects of learning
computational models of energy consumption - the data and the
models. While some works use data generated using simulations
of a particular vehicle’s dynamics [19], we only consider methods
that record real data in our review.

Data Review
Early works in energy consumption estimation for EVs established
the complexity of the problem. Li et al. [16] describe the major
factors that contribute to the energy consumption of the electric
vehicles. The authors found that the topography and use of HVAC
systems were the primary contributors to the variation in energy
consumption. Their experiments, however, considered the case that
the other auxiliary devices such as headlights were always turned
off which would also be a primary source of energy consumption.
The data was limited to a Nissan Leaf 2011 model on 5 km routes
within Sydney. Alvarez et al. [1] used smartphones to record data
inside the car and predict the range. The authors use speed, acceler-
ation and jerks recorded through the smartphone to estimate driver
behaviour in addition to the GPS data for energy consumption esti-
mation. The data is collected in a Mitsubishi Electric car with 10
users on the same 6 km stretch in Madrid.

The recently proposed public Vehicle Energy Dataset (VED) [21]
consists of attributes that capture various aspects of a drive: trip
characteristics - distance, speed, GPS coordinates; environmental
conditions - Outside Air temperature; Auxiliary Devices - Heater
Power, AC; Power and Battery Info - State of Charge (SOC), Volt-
age and Current. The dataset is recorded over an year consisting
of data from 374,000 miles (600,000 km) of drives which includes
hybrid and pure-electric drives with a total of ≈50,000 km of data.
Another publicly available dataset is the SpritMonitor dataset [2, 9]
which consists of weather, tire, heater information in addition to
the distance, speed and time attributes. A total distance of 4630
km with Mitsubishi i-MiEV and Volkswagen e-golf vehicles were
collected. Other datasets used in recent works [23] include the 2011
Denmark data [14]. The data consists of 1.4 million km of rides with
164 electric vehicles. The recorded data has been augmented with
weather information, wind speed, etc. with the help of GPS coordi-
nates and weather prediction. In contrast, our dataset is recorded
for a fleet of 27 buses in a major city traveling ≈460,000 km over
a period of 23,500 hours. A total of 128 attributes concerning trip
length, distance, speed, driver behaviour, environmental conditions,
auxiliary devices, etc. is sampled every 6 seconds. We discuss our
dataset in detail in Section 3.

The various relevant datasets are summarized in Table 1. Among
all the datasets discussed, VED is a public dataset with good distance
coverage. In Section 6.5 we show the applicability of our approach
to this dataset.

Model Review
Various models have been used to learn energy consumption from
large-scale vehicle data. The input data for the problems is of the
order of 20-30 attributes. With this size of the input data, most
methods have stuck to classical machine learning methods like- De-
cision Tree, SVR, Random Forest,Multiple Linear Regressor (MLR)
[6] or Artificial Neural Networks (Multi-layer perceptrons) over
trip-level features [1, 16]. A hybrid Convolution Neural Network
(CNN) and Bagged Decision Tree (BDT) model is proposed by [19].
More recently, Petcevicius et al. [23] suggest a method that breaks
down the route of interest into segments. The model then predicts
the speed profile for this segment. Based on the speed profile and
other conditions like environmental conditions, road type, etc., the
energy consumption (and the variance) is predicted for every seg-
ment and finally accumulated to get the Total Energy Consumption.
The authors test sate-of-the-art (SOTA) deep learning methods like
Long-Short Term Memory and Deep Neural Networks with dense
connections.

Distinctions from our work
Our work differs from existing work in the following ways: (1) We
collect a large dataset of a single type of electric vehicle - buses
in our fleet. The task of energy consumption prediction is quite
challenging as the passenger load in buses are quite dynamic as
compared to passenger vehicles. (2) Our model uses a two-stage
prediction approach. A primary set of features is used to predict
feature engineered secondary set of features. Finally, both the pri-
mary and secondary set of features are used to predict the energy
consumption for the trip. We test this approach on a variety of mod-
els and scenarios on real-world data. (3) We systematically identify
the features that the energy consumption depends on and then
model it via our machine learning pipeline. (4) We test our models
extensively for longevity and generalization to unseen routes and
vehicles. (5) We also show the applicability of the model and the
engineered features, not only on our dataset, but also on a public
dataset.

3 DATASET ANALYSIS
Table 1 discussed various datasets that have been proposed in the
literature for the learning of energy consumption for electric ve-
hicles. As highlighted earlier, the existing datasets have following
limitations:

• Limited data for electric vehicles: The publicly available VED
dataset also has only ∼7600 km of electric vehicle data.

• Limited passenger load variability: Cars have a limited vari-
ability in passenger load due to a lower capacity. In this work,
we consider data from a fleet of buses. Therefore, the load
on the vehicle varies significantly.

• Limited features Collected: In related work, while an effort
has been made to record attributes concerning all aspects of
the drive, in many cases, critical information such as motor
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Dataset Features Public Size (km) Vehicles

VED [21] Vehicle ID, GPS, Altitude, Vehicle Speed, Yes 600,000 Hybrid, Battery, Fuel
Engine Signals, Ambient Temperature, Battery Usage, 7598 (EV)
Auxiliary Power Signals, Battery V-I, Battery SOC

Nissan [16] Time, Distance, Speed, HVAC No 5km ×N1 Nissan Leaf 2011

Smartphone [1] Time, Distance, Speed, Displacement, Acceleration No 6km ×N2 Mitsubishi Electric

SpritMonitor [2] Distance, Time, Speed, Driving Style, Yes 4,630 Nissan iMiEV,
Tires, Park Heating, A/C Volkswagen E-Golf

Denmark [14] Time, Distance, GPS, Air Temperature, No 1,400,000 33 Citroen C-Zero,
Travel Time, Wind Speed, Altitude diff, 56 Mitsubishi iMiEV

Weekend/Non-weekend, Road Condition, Road Type 75 Peugeot iOn

Ours Time, Speed, Distance, SOC, Ambient Temp, Saloon Temp, No 460,000 Electric Buses
DC-DC Energy, Motor Energy, Auxiliary Energy

Table 1: A comparison of EV datasets and the features used for energy consumption. N1 represents 25 runs along the same
5km route. N2 signifies 10 drivers driving through the 6km route where the number of trial runs were not disclosed.

Trip Time Trip Dist. Speed Ambient Saloon CSOC DCEC Auxiliary Motor TEC
(mins) (kms) (kmph) Temp. (°C) Temp. (°C) (%) (kWh) (kWh) (kWh) (kWh)

mean 97.46 31.59 21.17 26.49 24.86 12.97 1.35 2.27 29.03 38.27
std 67.14 18.26 3.34 4.57 2.74 8.05 1.4 1.69 17.09 22.18
min 3 2.12 3.86 11.42 11.16 -2 -9 0.08 -96.69 1
25% 61.8 20.38 19.06 23.5 23.94 8 1 1.33 18.79 26
50% 79.8 28.62 21.05 26.91 25.75 11 1 1.86 26.24 35
75% 109.7 37.38 23.16 29.96 26.38 17 2 2.79 35.13 45
max 573 130.25 55.69 37.52 38.24 99 12 20.04 129.8 176

Table 2: Descriptive Statistics for our dataset with 27 eBuses.

Trip Time Trip Dist. Speed Ambient CSOC AC Energy Heater Energy TEC
(mins) (kms) (kmph) Temp. (°C) (%) (kWh) (kWh) (kWh)

mean 9.51 4.58 39.63 12.34 4.29 0.06 0.05 0.76
std 8.94 3.57 12.02 11.47 4.15 0.1 0.15 0.71
min 0.81 0.1 3.49 -14.45 -0.12 0 0 0.01
25% 3.62 1.97 31.69 3.07 1.34 0 0 0.28
50% 7.15 3.6 39.02 11.5 3.05 0.03 0 0.57
75% 11.76 5.86 46.61 22.14 5.98 0.08 0.04 1
max 78.72 21.31 89.43 35.53 22.93 1.36 1.42 5.77

Table 3: Descriptive Statistics for VED dataset.

energy, auxiliary energy, temperature inside the car, etc. has
not been recorded. In this dataset, we record these values to
get an accurate picture of the vehicle conditions and the other
factors that influence energy consumption of the vehicle.

Energy consumption modeling depends heavily on the choice of
input features. In this work, we model the energy consumption on
a trip-level. Therefore, the features are accumulated at the trip level
before the energy consumption is estimated. Our dataset consists
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Figure 2: Trip segmentation based on 15 mins stoppage duration in our dataset. Each color represents a segmented trip.
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Figure 3: Total Energy Consumption for different Average
Speed and Ambient Temperature values across trips in our
dataset.

of 14413 trips as compared to 503 in the VED dataset and has over
∼60× km of vehicle data collected.

A trip is defined as a period of vehicle data where the ignition is
on and it has less than 15 minutes of stops, i.e., we instantiate a new
trip if the vehicle stops for more than 15 minutes (continuously) while
traveling on a route.

We define our trip in a way that active periods of the vehicle’s
motion are modeled, i.e., we remove periods where the vehicle is
stopping for a long period of time for breaks, etc. This allows our
features to represent the vehicle in motion only. Table 2 shows a
roster of the trip-level features recorded and their values. A bus
trip, as in our case, is 97 mins on average. In comparison, we show
the statistics from the VED dataset in Table 3. An average trip lasts
just 9 mins. The speed variation is much higher in the VED dataset
since the data is for cars as opposed to buses in our dataset. The
temperature variation in our data is from 11-37 degrees Celsius.
The average SOC consumed is at 12%.

Figure 2 shows the example trip segments within a route (each
marked with a different color) segmented based on the above defi-
nition. As one can observe, the trip represents sustained activity
in the bus for varying amounts of time. Figure 2 also shows the
geographical variation (masked lat, long) within the trip.

Our dataset consists of time series parameters reported every 6
seconds from the vehicle. The data is sent to a centralized server
in real-time over a 4G network. The higher sampling frequency of
the time series data helps in accurate and precise data collection of
primary and secondary features- e.g. to compute the trip distance
accurately based on latitude, longitude recorded, or to determine
harsh braking, acceleration incidents within a trip. This further
helps to provide accurate insight into the energy consumption.
Given the goal of estimating energy consumption for a trip, we use
only trip-level features, i.e., aggregating data for an entire trip.

Challenges in Energy Modeling
Accurately predicting total energy consumption of an EV before
the trip starts is challenging since it is dependent on several directly
observable/ non-observable factors. Figure 3 shows the distribution
of total energy consumption (TEC) for different average speed and
ambient temperature values. First, we show that TEC varies sig-
nificantly across different vehicle speeds and ambient temperature.
Even for trips with fixed average speed and ambient temperature,
the TEC values have high variance. Thus, modeling a subset of fea-
tures such as speed or temperature, by itself is not a good indicator
of energy consumption levels. This necessitates a deep dive into un-
derstanding the factors affecting energy consumption holistically-
including external factors like weather and traffic conditions, ve-
hicle internal factors like saloon temperature, load etc., as well as
driver behaviour parameters like harsh accelerations and braking.

4 PROPOSED METHOD FOR EV ENERGY
CONSUMPTION MODELLING

Our goal is to predict the energy consumption of a eBus trip "before
the start of the trip". Our approach to this goal has been to develop
a model that can generalize to any route given the basic features
that the energy consumption is dependent on. Therefore, our learn-
ing strategy does not take route specific energy consumption into
account. Rather, we rely on the features described in this section
for learning the energy consumption model. To this end, we pro-
pose various set of features, which aid our analysis towards energy
consumption modelling. Apart from the features, we also discuss
the ML pipeline and the models used along with the evaluation
metrics for our task.
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Figure 4: A comprehensive set of features proposed and con-
structed in this work.

4.1 Features
Figure 4 shows all the features constructed in this paper. Features
in Quadrant I and IV are readily-available and logged from the data
collected, and the features in Quadrant II and III are the key features
constructed (estimated) based on extensive feature engineering,
which is a core contribution of this work. Quadrant I and II features
are available before the start of the trip (called as Pre-trip features).
Quadrant III and IV features are derived during the trip (called as
On-trip features). In this section, we present different feature sets
used for energy consumption modelling.

4.1.1 NF: Naive Features. We start our analysis with a baseline
feature set for energy consumption estimation. Here, we use just
the three basic features readily available from pre-trip features -
trip distance, time and average speed during the trip (shown in
Blue color Quadrant I, Figure 4). In this work, we consider the
trip distance, speed and time as pre-trip features since these are
roughly known a priori for the bus route based on time of the day.
Even approximate values of these features provide a good baseline
for the energy consumption estimation. To further validate this
assumption, we do a sensitivity analysis of these features in Section
5.

• Trip Time: The trip time is derived as the difference in
timestamps at the beginning and the end of the trip.

• Trip Distance: Using the recorded GPS attributes, we calcu-
late the distance of the trip as, D =

∑N
i=1 H (P1, P2), where N

is the number of samples (note that each sample is recorded
after 6 seconds in our dataset) within the trip and H is
the Haversine [5] distance between the geospatial points
P1(lat1, lonд1) and P2(lat2, lonд2).

• Average Speed: Average speed is derived from the mean
wheel based speed (tachometer) for the vehicle during the
trip.

4.1.2 LF: Logged Features. In the Logged Features set, we include
all the features logged by the vehicle during the trip. The intent
here is to find the features which correlate the most with the output
variable (TEC, in this case) and then use only these features for
regressing the target. The following features are logged in the
vehicle alongside the Naive Features:

• Ambient Temperature: The mean ambient temperature
(in °C) for the trip.

• SaloonTemperature: The temperature inside the bus cabin
is referred as the saloon temperature (in °C). This indicates
the usage of the Heating, Ventilation and Air Conditioning
(HVAC) system of the bus.

• Consumed state of charge (CSOC):We record the charge
depletion of the high voltage battery during the trip. The
consumed state of charge (in %) is.

CSOC = SOCs − SOCe (1)

where SOCe denotes the battery SOC at the end of the trip,
SOCs is the SOC at the start of the trip (as % of the battery
capacity).

• DC-DC Energy Consumption (DCEC): The motor drive
within a bus runs on High Voltage DC. Thus, a DC-DC con-
verter is used to convert the battery voltage to HVDC. The
energy lost in the switching activity is used as the DC-DC
energy consumption feature.

DCEC = DCECe − DCECs (2)

where DCECe denotes the DC-DC Energy Consumption at
the end of the trip, DCECs is the DC-DC Energy Consump-
tion at the start of the trip (in kWh).

• Auxiliary EnergyConsumption (AEC):Auxiliary energy
in the vehicle is consumed by devices such as lights, fans,
power steering, windscreen wiper motor, head-lights and
rear-lights and even the HVAC system. The total energy con-
sumed by the auxiliaries directly effect the energy consump-
tion from the battery. The auxiliary energy consumption (in
kWh) is defined as,

AEC =
N∑
i=1

Vb (i)Ia (i)(t(i) − t(i − 1)) (3)

where N is the number of samples within the trip, Vb is the
battery pack voltage (in volts), Ia is the total auxiliary input
current (in Ampere), t represents the timestamp (in seconds).

• Motor Energy Consumption (MEC): The instantaneous
power values of the motor voltage and current are used to
accumulate the energy used during the trip time. The total
Motor Energy Consumption (in kWh) is defined as,

MEC =
N∑
i=1

Vm (i)Im (i)(t(i) − t(i − 1)) (4)

where N is the number of samples within the trip, Vm is the
motor input voltage (in volts), Im is the motor input current
(in Amperes), t represents the timestamp (in seconds).
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4.1.3 Engineered Features (EF). Apart from the naive and logged
features, we define a set of features based on domain knowledge and
real-world experiments, that is critical to model TEC. The proposed
features broadly belongs to traffic conditions, driving behavior,
geography and environmental conditions, and travel specifications.
A subset of these features can be computed before the start of
the trip (Quadrant II) and the remaining are estimated based on
the available data (Quadrant III) as described in Section 4.3. We
enumerate the specific features below:

• Traffic Conditions: The acquisition of real-time traffic in-
formation is a challenge and the prediction of its behaviour
before starting on a journey is all the more difficult. But,
from the perspective of TEC estimation, traffic conditions di-
rectly correlate with the driving behaviour which influences
the energy consumption. Hence, it becomes extremely im-
portant to engineer traffic behaviour. Following engineered
features help capture traffic conditions apriori to the trip:
– Time of Day (TOD): A whole day has been divided into
different parts - Morning (from 6:00hrs to 12:00hrs), After-
noon (from 12:00hrs to 16:00hrs), Evening (from 16:00hrs
to 21:00hrs) and Night (from 21:00hrs to 6:00hrs). These
different time frames capture the traffic behaviour accord-
ingly and hence provide themodel with the required traffic
information.

– Peak/ Off-Peak Hours: Peak and off-peak hours are a
direct indication of the traffic along a route in a city. The
busiest hours or peak hours are selected from 6:00 to 8:00
hrs, 11:00 to 16:00 hrs and 20:00 to 23:00 hrs and the left
out time periods as the off-peak hours. Selection of the
time-frames were rightly acknowledged by the traffic su-
pervisors in the area.

– Number of stops:While in motion, a vehicle can stop at
traffic signals and for passenger entry/get down. Traffic
density levels is another factor which can also define the
number of stops and is a variable quantity. Hence, more
the number of stops, higher is the traffic density and vice
versa. Every time, thewheel based vehicle speed parameter
drops to zero for few seconds (e.g., >10 seconds), it gets
counted towards the number of stops.

– Stop Duration (stopdur): This feature represents the to-
tal stop time (in minutes) within a trip that corresponds to
the stops because of high traffic density. This is computed
by summing the time period blocks when the wheel based
vehicle speed is zero within a trip.

• Driving Behavior: Driving behaviour significantly con-
tributes to the TEC estimation. Although driver specific in-
formation is difficult to capture, one of the main applications
of TEC estimation traces back to rewarding drivers based on
the energy consumption for the trip and encourages efficient
driving skills. This helps in reducing the battery degradation
rate and preserving battery life cycles. Following are the
features that indirectly help engineer driving behaviour:
– Speed Categories: This feature is engineered directly
from the average speed as one of the categorical variables.
From the data distribution as well as the domain expertise,
speed ranging from 15kmph to 25kmph is considered as

normal. Less than 15kmph is termed as slow, possibly
because of higher traffic densities. More than 25kmph is
fast driving indicating the vehicle is being driven on a
highway or possibly, where traffic density is less.

– Regenerative Braking Energy (RBE): The regenerative
action in electric vehicle occurs during braking which
helps in accumulating energy being fed back to the bat-
tery for charging while still on motion. Miri et al. [18]
demonstrate that the regenerative action proves to be in-
efficient at fairly low speeds and hence is set to zero. Thus,
we use a speed threshold sth over which the regenera-
tive action is considered. The regeneration only happens
while decelerating, therefore regenerative action is en-
abled if the deceleration is less than dth . Above this limit,
it indicates a higher braking torque demand resulting in
dynamic braking where friction brakes are utilized. Fur-
ther, the regenerative action is disabled at higher battery
levels to prevent overcharging. We use sth = 15kmph and
dth = 0.7ms−2, derived empirically. Using the above three
conditions, the regenerative braking energy (in kWh/kg)
is derived as,

RBE =
N∑
i=1

v(i)⩾sth
0<d (i)<dth
soc(i)<95

(v(i)2 − s2
th ) (5)

where N is the number of samples within the trip, v repre-
sents the vehicle speed (in kmph), d represents decelera-
tion (inm/s2), and, soc represents the state of charge of
the battery (in %).

– Kinetic Energy Loss due to deceleration: This feature
captures the lost kinetic energy in the trip at the time of
decelerating. It is computed by:

LKED =
N∑
i=2

v(i)⩽v(i−1)

(v(i − 1)2 −v(i)2) (6)

where N is the number of samples within the trip, v repre-
sents the vehicle speed (in kmph) and LKED is Lost Kinetic
Energy due to deceleration (in kWh/kg).

– Kinetic Energy Gain due to acceleration: This feature
captures the gained kinetic energy in the trip at the time
of accelerating. It is computed by:

GKEA =
N∑
i=2

v(i)≥v(i−1)

(v(i)2 −v(i − 1)2) (7)

where N is the number of samples within the trip, v rep-
resents the vehicle speed (in kmph) and GKEA is Gained
Kinetic Energy due to acceleration (in kWh/kg).

– Harsh Acceleration (HA) Counts: When the accelera-
tion of the vehicle rises above a threshold of 1.5m/s2, it
gets added to the harsh acceleration counts.

– Harsh Braking (HB) Counts: If the deceleration of the
vehicle drops below a threshold of 1.5m/s2, it is considered
as harsh braking.
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– Over Speeding (OVS) Counts: Whenever the vehicle
speed exceeds a set threshold (say, 50 kmph), it is classified
as a over-speeding category.

• Geography and environmental conditions:The geograph-
ical as well as the environmental conditions have a signifi-
cant effect on the estimation of TEC. For instance, average
altitude (in metres) of a trip represents the geographical
conditions. Similarly, ambient temperature and saloon tem-
perature moulds the environmental conditions to some ex-
tent. However, since we cannot measure HVAC condition
or consumption, we monitor the difference between am-
bient and saloon temperature to help in capturing when
the heater and air conditioner is switched on respectively (as
shown in Figure 5). A positive difference value indicates that
A/C is ON whereas a negative value proves that the temper-
ature inside the vehicle is higher referring to the working of
the heater.

• Travel Specifications: This set of features directly relates
to the actual trip type and the specification of the vehicle used
in the trip. These features add value to the TEC estimation
as discussed below:
– Trip Length Range This is a categorical feature which is
directly computed from the trip time and the distance. A
trip time within 45mins to 2hrs is considered an average
time length of trip. Trips with greater than 2hrs trip time
may indicate going to a destination far off or having high
traffic density. Less than 45mins trip time means either
the destination is very close or the traffic is less dense.

– State of Charge prior to the trip (initial SOC): The
initial state of charge of the battery indirectly determines
the rate of discharge of battery while on a trip. Hence it is
essential to have it as one of the features that can help the
driver get an idea of the energy he would consume by the
end of the trip.

– Motor Efficiency (η) : These features help model the mo-
tor characteristics and the losses that may occur within
the motor. Mathematically, it is computed by:

MOE =
N∑
i=1

Tm (i)ωm (i)(t(i) − t(i − 1)) (8)

η =
MOE

MEC
(9)

where,Tm is torque output from the motor (in Nm), ωm is
angular speed of the motor (in rpm), MOE is motor output
energy (in kWh), and MEC is motor energy consumption
discussed under LF feature set.

As noted earlier, a subset of these engineered features can be
readily computed pre-trip and a subset needs to be estimated for a
given trip. To this end, we develop tiny regressors to predict these
features ahead of the trip as discussed in Section 4.3.

Given that we have defined all the features above, we will now
define combination of feature sets to study the importance of en-
gineered and logged features. Specially, we define the following
feature sets to perform ablation study and show the importance of
the engineered features.

5 0 5 10
Difference of ambient and saloon temp (°C)

0

25

50

75

100

125

150

175

To
ta

l E
ne

rg
y 

C
on

su
m

pt
io

n 
(k

W
h)

15

20

25

30

35

Am
bi

en
t T

em
pe

ra
tu

re
 (°

C
)

Figure 5: Identifying operation of A/C and heater from the
difference between ambient and saloon temperature.

(1) Naive Features: (Quadrant I) These are the three basic fea-
tures such as trip time, duration and avg. speed that are
available pre-trip and marked in blue in Quadrant I.

(2) Logged Features: (Quadrant I & IV) These are all features
that are recorded by the vehicle before and during the trip.

(3) PF(L) Pre-Trip Features - Logged: (Quadrant I) This fea-
ture set depicts the features that are available and logged
before the start of the trip. This represents the primary set of
features in our work to model the energy consumption.

(4) PF(LEF) Pre-Trip Features - Logged andEngineered (Quad-
rant I & II) This feature set depicts the features that are
available/logged or can be computed before the start of the
trip. This includes a subset of features from both logged and
engineered features.

(5) PF(ON) Pre-Trip and estimatedOn-Trip Features (Quad-
rant I, II & III) This feature set includes combination of pre-
trip logged and all proposed engineered features (those that
are readily available pre-trip and those that are estimated
using the predictors). This feature set is the proposed set
that captures all the relevant features, which is used by our
two-stage pipeline towards estimating energy consumption
accurately prior to the trip.

(6) ALL features: (Quadrant I, II, III, & IV) This feature set
includes all of pre and on trip features This is a compre-
hensive feature set with the combination of all pre-trip and
on-trip features including both logged and engineered fea-
tures. This acts as the best case feature set if the on-trip data
is also available, which is infeasible when computing energy
consumption apriori.

4.2 Ground-Truth Label Computations
The ground truth (GT) is the target variable which we try to predict
using the machine learning models. We calculate the GT Total
Energy Consumption (TEC) using the input features, i.e.,

TEC = BatteryOute − BatteryOuts (10)
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where, BatteryOute and BatteryOuts represents the outgoing
energy from the battery (in kWh) at the end and start of the trip,
respectively.

4.3 Two-Stage Pipeline to Model EV Energy
Consumption

In this Section, we discuss our two-stage modelling approach to
accurately predict Total Energy Consumption (TEC) per trip. Fig-
ure 6 presents the two-stage ML pipeline designed for per trip TEC
estimation.

Stage 1: In this stage, we determine the potential pre-trip fea-
tures that are readily available for energy consumption modeling.
This includes both naive features like trip time, distance, speed and
also the engineered features like Time of day, peak/off-peak, etc.,
in Quadrant II.

Stage 2: In stage 2, we develop tinyML predictors to estimate the
engineered features in Quadrant III, that are not readily-available
pre-trip. The input to these predictors are pre-trip features from
stage I and output corresponds to the specific engineered feature.
We use variousMLmodels- like LightGBM,AdaBoost, RandomeForest-
to train the individual feature predictor for the engineered features
such as harsh acceleration, braking, over speed, stop duration, num-
ber of stops, etc. We describe the specific models used, their hyper-
parameters, and their performance in Section 5.1.5, Table 6.

Finally, our solution employs a regression model that takes both
pre-trip and predicted on-trip features from stage 1 and 2 to accu-
rately estimate the energy consumption of the trip. In this work,
we employ and compare several traditional models such as multiple
linear regressor (MLR) [13], kernel support vector regressor (Ker-
nelSVR) [8], decision tree (DT) [24], random forest (RF) [3], adaptive
boosting (AdaBoost) [25] and light gradient boosting (LightGBM)
[12] regressors along with deep multilayer perceptron (Deep MLP)
networks for prediction of the Total Energy Consumption (in kWh).

Traditional models: Figure 7 shows the linear correlation of
TEC with various features. We can see that TEC correlates well
with trip distance, trip time and KE Gain due to acceleration. Thus,
indicating multiple linear regression (MLR) model may perform
well on our dataset. Apart from MLR, we also consider Support Vec-
tor Regressors using linear and radial basis function (RBF) kernels,
which provide an edge in some cases because of its nature of easy
adaptability. Decision Trees learn simple rules from the training
data features that help in prediction using the iterative dichotomiser
algorithm [11] working at its baseline. Our paper uses DTs with a
max depth of 7. DTs suffer from low bias, high variance problems
which are corrected using ensemble algorithms. Random Forest is
one of the bagging based ensemble techniques that uses bootstrap
aggregation of the DT based base learners to predict an output. In
our paper, RF uses 200 base estimators for prediction to achieve sat-
isfactory performances with a max depth of 7 for the base learners.
Adaptive Boosting and Light gradient Boosting [12] are two of the
boosting based ensemble methods which also use DTs as their base
models. The computation time of LightGBM is lesser than most of
the ensemble algorithms since the algorithm is accelerated by the
use of leaf wise tree growth, without any noticeable deterioration
of the model performances. LightGBM also uses 200 base estimators
each with 100 maximum leaves and max depth of 8. AdaBoost uses

800 base estimators for the Total Energy Consumption prediction.
All the above mentioned hyper parameter values were obtained
using Grid Search Cross-Validation (GridSearchCV) method of the
scikit-learn library [22].

Deep Learning (DL) Models: The deep learning paradigm has
demonstrated a way to learn the required features from the raw data
automatically without feature engineering in several application.
Thus, to validate if the extensive feature engineering is essential in
this particular use-case or if deep learning can learn intermediate
representations directly, we use the Deep MLP to predict the TEC
directly using the pre-trip PF(L) feature set, which includes only the
logged pre-trip features and NOT the engineered features. We then
compare the results from traditional models, i.e., PF(ON), which
includes engineered features with the described DL models. The
results are shown in Section 5.2. The architecture for the Deep
MLP Network used is a 3 hidden layers network with 25, 20 and 9
hidden neurons respectively. This model was obtained after a series
of experimentation using the scikit learn wrapper class offered by
Keras [4] along with GridSearchCV which helped in hyperparame-
ter tuning of the number of hidden layers and the number of hidden
neurons accordingly. The model uses He Normal[10] initialization
with Rectified Linear Unit (ReLU) as the Activation Function for the
hidden neurons. The output layer activation function is set as lin-
ear, since it is a regression problem. Adaptive Moment Estimation
(Adam) is used as the optimizer, with mean absolute percentage
error as the loss function for the training process. Early stopping
monitoring over the validation loss with a patience of 10 iterations
is used to ensure the model is free from over-fitting issues. Finally,
the model is trained over 200 epochs using a batch size of 32 to
produce the best possible performance scores.

4.4 Performance Metrics
The estimated Total Energy Consumption (kWh) results are evalu-
ated against a number of performance metrics.

• R2 score: It is commonly known as the coefficient of deter-
mination. The closer the R-squared value is to 1, the better
is the model. Mathematically,

R2 = 1 −
∑m
i=1(yi − ŷi )

2∑m
i=1(yi − ȳ)2

(11)

where m is the number of test samples, ŷi is the predicted
value of yi and ȳ is the mean value of y

• MAPE: Mean Absolute Percentage Error is sensitive to rela-
tive errors. The closer it is to 0, the better are our models. It
can be denoted by:

MAPE = (
1
m

m∑
i=1

| yi − ŷi |

yi
) × 100 (12)

where m is the number of test samples and ŷi is the predicted
value of yi

• MedAPE:Median Absolute Percentage Error is not sensitive
to outliers. Hence it helps give a more accurate insight of
how the models are performing. Similar to MAPE, values
closer to 0 indicates better models.

MedAPE =median(
| yi − ŷi |

yi
) × 100 (13)
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Figure 6: Two-stage pipeline to model EV energy consumption
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Figure 7: Positive correlation of TECwith Trip Distance, Trip Time, Kinetic Energy Gain due to Acceleration (top correlations).

• MAE: Mean Absolute Error is relative to the errors. It is
computed by:

MAE =
1
m

m∑
i=1

| yi − ŷi | (14)

• RMSE: Root Mean Squared Error is denoted by:

RMSE =

√√
1
m

m∑
i=1

(yi − ŷi )2 (15)

We use R2 score, MAPE and MedAPE for evaluation in most ex-
periments. Section 6.5 uses MAE and RMSE to compare model
performances on VED dataset[23].

5 EXPERIMENTS
We now show the model performance using different feature sets
described in Section 4.1 on our dataset. Our dataset contains 14413

Model Metric
R2 MAPE MedAPE

MLR 0.952 10.659 8.635
KernelSVR 0.952 9.974 8.433

Decision Tree 0.956 9.372 7.631
Random Forest 0.957 9.260 7.583

MLP 0.953 9.596 8.367
LightGBM 0.957 9.262 7.473
AdaBoost 0.955 9.350 7.494

Table 4: Traditional models performance on the naive fea-
ture set (NF)

trips from 27 buses and the data is split randomly into 70/10/20(%),
i.e. 10089, 1441, 2883 trips for training, validation and testing.
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# Feature Model Metric
R2 MAPE MedAPE

1 NF LGBM 0.957 9.262 7.473
AdaBoost 0.955 9.35 7.494

2 LF LGBM 0.989 4.369 3.396
AdaBoost 0.988 4.572 3.584

3 PF(L) LGBM 0.965 8.072 6.485
AdaBoost 0.963 8.154 6.769

4 PF(LEF) LGBM 0.968 7.623 6.112
AdaBoost 0.967 7.768 6.227

5 PF(ON) LGBM 0.99 4.294 3.064
AdaBoost 0.993 3.027 2.213

6 ALL LGBM 0.994 3.745 2.867
AdaBoost 0.998 1.516 1.118

Table 5: Performance of LGBM and AdaBoost models on var-
ious proposed feature sets.

5.1 Model performance on different feature
sets

Effect of model performance on the user : Increasing the model
performance results in improvements in all subsequent applications,
like battery sizing, range estimation, etc. For example, for an average
eBus with 300 kWh battery capacity, a 250 km (10 trips) range is
expected. With an MAPE of 10% (NF Set), the safe range would be
∼225 km. If the model has an MAPE of 3% (PF(ON)), the safe range
would come to 242.5 km. Thus, the improvement in MAPE from
10 to 3% would result in extension of the safe range by ∼17.5km.
The model performance achieved through different feature sets is
discussed in the following subsections.

5.1.1 Naive Feature Set: NF. Table 4 shows the results for classical
and deep learning based machine learning models for regressing
the Total Energy Consumption (TEC) of the trip using only the
most intuitive features described as the Naive Feature set. The naive
features from a trip establish the baseline for the error. As we can
see, most of the models have an MAPE of 9-10%. In the remainder
of the paper, we show the results only for LightGBM and Adaboost
models for different feature sets, since these models also have a
reasonable median error (MedAPE) compared to others.

5.1.2 Logged Features : LF. With Logged features, we use all the
variables recorded directly from the dataset as input to the regres-
sion models. This gives us a clear target that can be achieved for
the regression problem and help estimate the relative importance
of the input features for regressing the output. Specifically, this
set includes all the energy consumption features that are directly
available during the trip with respect to DC-DC, and motor energy.
In a typical setting these features are not available apriori. Table
5 (row 2) shows that the Logged features results in 0.98 R2 score
with MAPE of 4.3-4.5% (50% decrease in MAPE as compared to NF).
This is mainly due to the inclusion of features which are available
during the actual trip, e.g., motor energy, auxiliary energy, etc. This

Vehicle C
Vehicle B
Vehicle A

(in km)

(in
 k

W
h)

Figure 8: Variation of total enegy consumption (TEC) along
with the bounds when the distance parameter is perturbed
by ±10%.

Estimated On- Metric
Trip Features Models Hyperparameters R2

HA LightGBM nEstimators = 200, max depth=8 0.71
HB AdaBoost nEstimators = 800, max depth =7 0.84
OVS LightGBM nEstimators = 200, max depth = 8 0.52

stopdur LightGBM nEstimators = 200, max depth=8 0.97
no. of stops RF nEstimators = 800 0.85

RBE RF nEstimators = 800 0.86
LKED AdaBoost nEstimators = 800, max depth =7 0.97
GKEA AdaBoost nEstimators = 800, max depth =7 0.97

Table 6: Performance of feature predictors to accurately es-
timate engineered on-trip features.

is considered as the best case baseline and our goal is to achieve this
error without using any of the logged features (i.e. without using
any actual on-trip features) and using the proposed engineered
features and the two-stage pipeline.

5.1.3 Pre-Trip Features (Logged): PF(L). PF(L) includes only the
pre-trip features described in Figure 4-Quadrant I . Table 5 (row 3)
shows that PF(L) with only a limited number of features performs
poorly with 8% MAPE error for estimating TEC. However, this is
slightly better than the NF set which just uses the three pre-trip
features.

5.1.4 Pre-Trip Features: PF(LEF). PF(LEF) includes both logged and
engineered features that are available prior to the trip (Figure 4
-Quadrant I and II). Using this feature, the models are slightly able
to improve upon PF(L) with an MAPE of 7.6% (Table 5 (row 4)). This
indicates that pre-trip engineered features are contributing to reduc-
ing the energy prediction errors. We also inspected the importance
of saloon and ambient temperature related features explicitly since
these were typically not captured in other datasets. By excluding
these features, the MAPE increases to 8.1%. Thus, it would always
be helpful to capture these features, however, regardless, our model
uses the rest of the features well to provide a comparable accuracy.
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5.1.5 Pre-Trip and estimated On-Trip Features: PF(ON). PF(ON) fea-
ture set includes all the pre-trip and estimated on-trip features. As
noted earlier, our two-stage ML pipeline operates on this feature
set, where pre-trip features are used to estimate the on-trip features
in Figure 4- Quadrant III. Table 6 shows the performance of fea-
ture predictors across all on-trip engineered features. We can see
that most of the predictors have high R2 score indicating a good
performance of the individual predictors.

Our two-stage pipeline uses the combination of pre-trip and
estimated features, to model the energy consumption. Table 5 (row
5) shows that with PF(ON) on our two-stage pipeline we can achieve
MAPE error of 3-4%, which is 67% decrease in error compared to
Naive features (row 1) and 33% decrease as compared to Logged
features (row 2), which are derived by collecting the data during
both pre and on trip. Thus, showing the impact of engineered
features on total energy consumption estimation of EV vehicles.

We also demonstrate the sensitivity of this model to the variation
in trip distance in Figure 8. We found that the change in TEC is
< 5.5% for a 10% change in the trip distance. For a small distance
error of 1 km, the change in TEC is <1.17%. Similar analysis has
been done for speed and time and the resulting TEC variation was
minimal.

5.1.6 All features: ALL. In this experiment, we use all the features
presented to derive the least possible error for TEC estimation.
Note that, since this uses on-trip logged features (Quadrant IV),
this feature set is not feasible to use in real scenarios as it requires
monitoring during the trip. Nonetheless, it can be used to compare
the MAPE errors obtained from our two-stage pipeline. Table 5
(row 6) shows that MAPE using ALL features is the least across
different sets. Our proposed two-stage pipeline with PF(ON) is very
close to the MAPE error derived using ALL features, showcasing
the benefit of the engineered features.

We test the generalization of these results thoroughly in Section
6 using the same PF(ON) feature set on our two-stage pipeline.

5.2 Feature engineering vs Automatic feature
learning : Deep Learning Baseline

In the previous Section, we showed the MAPE errors obtained by
our two-stage pipeline with PF(ON) feature set (See Table 5 (row
5)). We will now show the MAPE errors when we use a end-to-end
neural network to automatically learn the intermediate features
from input data (i.e. PF(L) features) and estimate TEC. Table 7
compares the result from deep MLP model with the LightGBM
and AdaBoost models using our two-stage pipeline. Deep MLP
fails to learn the automatic relationships from the raw data and
we can see that MAPE of deep MLP model is 65% higher than the
MAPE result derived using our two-stage pipeline with pre-trip and
proposed engineered features. Thus, without feature engineering
leveraging the domain knowledge, it is not feasible to apply a end-
to-end network to model energy consumption in EVs, especially due
to variations across several factors such as traffic, driver, vehicle,
environment, etc.

5.3 Model Explanation
A major advantage of feature engineering process and usage of
traditional models is the explainability of the results. To this end,

# Feature Model Metric
R2 MAPE MedAPE

1 PF(L) MLP 0.958 8.639 7.465

2 PF(ON) LGBM 0.99 4.294 3.064
AdaBoost 0.993 3.027 2.213

Table 7: Comparison of Deep learning MLP model (auto-
matic feature learning) with our Two-stage pipeline (with
feature engineering).

we now show how engineered features and feature correlation help
our models to estimate energy consumption accurately.

5.3.1 Validation of feature variation. To show feature explainabil-
ity, let us take two trips from two different vehicles in our dataset.
Trip 1005 and Trip 2220, both having same total energy consump-
tion of 30kWh for the trip with different distances travelled, i.e.
22.25 km for the former and 35km for the latter. Both these trips
were at the same time of day and we also noticed the auxiliary
energy from these vehicles had similar energy consumption i.e.
1.5kWh and 1.4kWh. Thus, it is non-trivial to understand the cause
of such high energy consumption in case of trip 1005 with shorter
distance compared to trip 2220.

Through the proposed feature engineering process presented
in Section 4.1, we can now determine what is the cause for such
high variation in energy consumption. From our analysis using the
engineered features, it turns out that the driver in trip 1005 was
driving rashlywith high harsh accelerations and braking as opposed
to driver in trip 2220. Thus, if driver behavior is not modelled, it
is non-trivial to provide reasoning for this variation. Further, with
the help of domain knowledge and feature engineering, we cover
most of the aspects that impact energy consumption.

5.3.2 Correlation Validation. To understand if the ML models are
learning the correct correlation with respect to the features, we
check the feature importance values of the models.

We validate this with the Pearson’s Correlation Coefficient [7].
As per the Pearson’s Correlation Coefficient of TEC and the respec-
tive feature, the top and worse correlations are plotted in Figure 7
and 9. Figure 7 shows the features that correlate the most with the
model output variable, i.e. Total Energy Consumption. We found
that trip distance, trip time, kinetic energy gain and lost during
acceleration and deceleration respectively correlate the most with
the energy consumption. The least correlated attributes were speed,
initial soc and ambient temperature as shown in Figure 9. We ob-
serve that the feature importance for most correlated features are in
line with the top correlations. Similarly, the bad correlation features
have lower feature importance as shown in Table 8.

5.4 Discussions
We showed that our proposed methodology can reduce the MAPE
errors close to 3% on our dataset andwe now present few limitations
and opportunities to further reduce the error in energy consumption
estimation.
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Figure 9: Correlation of TEC with Average Speed, Initial SOC, Ambient Temperature (bad correlations).

Models
Features LGBM AdaBoost

trip time 0.11143 0.02861
trip distance 0.09633 0.79084
avg. speed 0.05133 0.00199

ambient temp. 0.06800 0.00202
diff. of amb. and sal. temp. 0.05100 0.00887

TOD 0.02000 0.00066
peak/ off-peak 0.00433 0.00014
speed categories 0.00033 0.00004
trip length range 0.00066 0.00015
avg. altitude 0.00423 0.00197
init. soc 0.04367 0.00179
motor eff. 0.06033 0.00458
no. of stops 0.03900 0.00326
stopdur 0.03733 0.00197
RBE 0.08933 0.00603
LKED 0.07566 0.09048
GKEA 0.10600 0.04638
HA 0.05100 0.00192
HB 0.08567 0.00816
OVS 0.00433 0.00009

Table 8: Feature Importance values across different models.

(1) Due to cost and privacy implications, there is a limited ob-
servability on passenger loads. In large vehicles such as buses,
this can be a significant factor towards energy consumption
modelling. One way to further improve MAPE errors is by
indirectly monitoring the passenger load through vehicle
torque etc.

(2) Due to limited memory and instrumentation overheads, we
could only record the battery out and state of charge at inte-
ger precision. Therefore, our results only reflect the accuracy
to the said precision.

(3) Battery state of health is another parameter that impacts
energy consumption. The remaining battery life cycles de-
termine the rate of discharge of the battery and hence con-
tribute to the total energy consumption. Since we consider
different vehicles, each vehicle may have batteries of varying
remaining life, which if considered in the modelling beside
the proposed features can significantly reduce the errors. We
plan to include this feature as part of our future work.

6 GENERALIZATION STUDY
Till now, we used 70% of data from all vehicles to train the model
and remaining was used for validation (10%) and testing (20%). We
now present detailed analysis when our two-stage pipeline with
PF(ON) feature set is applied to different amounts of training data,
past data, number of vehicles and routes.

6.1 Training with lesser data
Table 9 shows the performance of our two-stage pipeline with
PF(ON) features with the reduction in training data from 80 to 50 to
20%. The number of trips used for training are 11530, 7206 and 2882
subsequently for the 80-50-20(%) cases. The MAPE results show a
slight deterioration as we reduce the training data, but is still within
the acceptable ranges. For instance, MAPE increases by just 1% with
reduction of training data from 80% to 50%. This demonstrates the
full potential of the models trained on the proposed feature set:
PF(ON) which generalizes quite well even with a smaller training
set.

6.2 Longevity Study
We now show how the proposed model can generalize when trained
on trips from one time period and tested on trips from another time
period. We used 2 months of data with a total of 6266 trips as
training data and another 2 months data with 8147 trips as test
data (both having non-overlap time periods). The AdaBoost model
performance for this case resulted in MAPE of 6.44% which shows
that the model trained on data from one time period (past data) can
generalize well to other time periods. Extensive longevity studies
were not possible as the data collection is still ongoing and hence
this analysis was restricted with two months of training data and
two months of test data. We also performed other splits such as
one month training data and three months test data and so on, and
observed similar performance.

6.3 Vehicle Generalization
Until now, we showed the performance of our two-stage approach
when the training data included data from all vehicles together. In
this section, we use data from a subset of the vehicles for training
and test on the other subset of vehicles (non-overlapping vehicles).
We filter the vehicles used for training on the basis of domain
knowledge and feature distribution, i.e., we first select the trips (and
associated vehicles) which has diverse range of feature values in

41



COMPASS ’22, June 29-July 1, 2022, Seattle, WA, USA Roy, Millend et al.

0 100 200 300 400 500
trip duration (mins)

0.000

0.002

0.004

0.006

0.008

0.010

0.012

De
ns

ity

Dataset
Train

0 10 20 30 40
Ambient Temperature

0.00

0.02

0.04

0.06

0.08

De
ns

ity

Dataset
Train

0 50 100 150 200 250
Trip Distance (km)

0.00

0.01

0.02

0.03

0.04

De
ns

ity

Dataset
Train

Figure 10: Comparison between train distribution vehicles and all vehicles in our dataset.

Training Data Number of Metric
Ratio (%) Train Trips R2 MAPE MedAPE

80 11530 0.993 3.027 2.213
50 7206 0.988 4.134 2.703
20 2882 0.98 5.943 4.167

Table 9: Two-stagemodel performance showing the effect of
varying training data size.

Selection Training Size Metric
Policy Vehicles Trips R2 MAPE MedAPE

Distribution-based 15 1455 0.97 7.69 6.38
15 8122 0.97 6.16 5.26

Random 22 (80%) 11461 0.97 6.98 5.16
14 (50%) 6690 0.97 6.97 5.42
5 (20%) 2256 0.96 8.38 6.45

Table 10: Two-stage model performance for generalization
over vehicles using distribution-based and random selec-
tion.

Figure 11: Two routes selected from our dataset for route
generalization.

PF(ON) feature set. This ensures that the training has a good overlap
across the dataset. Through this we identified that only 1455 trips
across 15 vehicles were sufficient to cover the diverse distribution
across all the features. We call this selection policy of vehicles as

VED
Models MAE RMSE

LGBM 1.22 1.792
AdaBoost 1.382 1.986
LSTM [23] 1.47 7.78
DNN [23] 2.33 9.91

Table 11: Comparison of two-stage model results with Deep
learning models to predict CSOC on VED dataset.

“distribution-based". Figure 10 shows the distribution-based selected
vehicles’ training distribution having a good overlap against the
total dataset with all the vehicles together. The confidence band
across the dataset distribution shows the variance in data for each
of the features across the different vehicles.

Table 10 compares the distribution-based training vehicle se-
lection procedure with randomly selected vehicles (80-50-20%) us-
ing AdaBoost model. Vehicle selection using distribution-based
approach results in 15 vehicles, in one case, we use only the nec-
essary trips from this 15 vehicles as training data (the ones which
has highest distribution coverage) and in another case we take all
the trips from these 15 vehicles. As we can see, with just 1455 trips
((10.1% of overall data), our model is able to achieve a decent MAPE
of 7% and if we use all the trips from these 15 selected vehicles, i.e.,
8122 trips (56.5% of overall data) we can reduce the MAPE error
to 6%. Thus, we show models trained using data from one set of
vehicles can be applied to new vehicles with unseen trip data.

We also performed random selection of vehicles with 80%, 50%,
and 20% of vehicles selected for training, i.e., 22, 14,and 5 vehicles,
respectively. Table 10 shows that as the % of vehicles considered in
training reduces, the MAPE error increases significantly. Further-
more, MAPE results of distribution-based approach outperforms
random selection policy with much lesser vehicles and trips used
for training. Thus, the proposed model is still generalizing better
for the carefully selected vehicles even with a lower amount of
training data.

6.4 Route Generalization
We now show the efficacy of our model with PF(ON) feature set
for generalization across routes. The idea is to use trip data from
one particular route for training and test the model on data from
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a different route. Figure 11 shows two specific routes A and B
in our dataset with length of 22.4km and 20.96km, respectively.
We trained our two-stage ML pipeline with data from Route A
consisting of 2047 trips with a total of 49196 km. The test data
belongs to Route B consisting of 595 trips. Our two-stage pipeline
to predict energy consumption for Route B has 7.3% MAPE. This
error is within acceptable limits and is slightly higher when our
model is trained with data from both the routes with MAPE error
of 6.0%. This shows that our engineered features are able to capture
diverse characteristics in the data and can be used to generalize
across different routes.

6.5 Applicability to other EV datasets
We now show the applicability of our proposed two-stage pipeline
with PF(ON) feature set on a public dataset, viz., VED dataset [21].
VED dataset includes data from passenger EV vehicles, see Table 1
for more information. To this end, the state-of-the-art results on
VED dataset is proposed in [23], which uses Deep learning models
such as LSTM and DNN to estimate the consumed state of charge
per trip on the VED dataset. To ensure fair comparison, we use
the proposed two-stage approach with the engineered features to
estimate consumed state of charge (CSOC) in VED dataset. Table
11 shows the performance of the proposed model against that pre-
sented in [23] for estimating CSOC on VED dataset. In [23], only
MAE and RMSE values are presented for CSOC prediction and is
shown in the last two rows of Table 11.We can see that the proposed
two-stage model performance (first two rows) has much lower MAE
errors (100% reduction) and RMSE errors (400% reduction) when
compared to the approach presented in [23]. Thus, we showcase the
applicability of the proposed approach and feature engineering to
other EV datasets while outperforming state-of-the-art prediction
results.

7 CONCLUSION
As the adoption of electric vehicles increases, accurate energy es-
timation is very important for large scale deployment of electric
vehicles. In this work, we discussed challenges in estimating real-
world energy consumption of electric vehicles and presented a data
collection approach to address this. We modeled the energy con-
sumption for a fleet of buses using features which describe various
aspects of a trip including external factors (like weather and traffic
conditions), vehicle internal factors, driver behaviour etc. Then,
we showed that with a two-stage prediction approach where some
intermediate features are predicted using machine learning meth-
ods along with directly observed features, we are able to achieve
an MAPE of < 5% on our dataset. Further, we also show that our
models generalize well for a new set of vehicles, routes and time
periods on our dataset. The proposed approach also generalizes
well to other EV datasets. Our dataset is the largest EV dataset ever
discussed and the first dataset for a fleet of buses. We also show that
our methodology with feature engineering is superior compared
to the end-to-end deep learning baselines. As a future direction,
we would like to explore the estimation of state of health (SOH)
of a battery based on its historical usage and remaining life, and
incorporate this information for TEC prediction.

With our analysis, we are hopeful that applications such as rout-
ing, fleet management, battery sizing, etc., would be able to benefit
and make electric vehicle fleets an integral part to achieve a sus-
tainable future.
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